↓ Skip to main content

Wound-healing effects of 635-nm low-level laser therapy on primary human vocal fold epithelial cells: an in vitro study

Overview of attention for article published in Lasers in Medical Science, September 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
48 Mendeley
Title
Wound-healing effects of 635-nm low-level laser therapy on primary human vocal fold epithelial cells: an in vitro study
Published in
Lasers in Medical Science, September 2018
DOI 10.1007/s10103-018-2628-0
Pubmed ID
Authors

Zhewei Lou, Chi Zhang, Ting Gong, Chao Xue, Austin Scholp, Jack J. Jiang

Abstract

Low-level laser therapy (LLLT) has been promoted for its beneficial effects on tissue healing and pain relief for skin and oral applications. However, there is no corresponding literature reporting on vocal fold wound healing. Our purpose was to assess the potential wound-healing effects of LLLT on primary human vocal fold epithelial cells (VFECs). In this study, normal vocal fold tissue was obtained from a 58-year-old male patient who was diagnosed with postcricoid carcinoma without involvement of the vocal folds and underwent total laryngectomy. Primary VFECs were then cultured. Cells were irradiated at a wavelength of 635 nm with fluences of 1, 4, 8, 12, 16, and 20 J/cm2 (50 mW/cm2), which correspond to irradiation times of 20, 80, 160, 240, 320, and 400 s, respectively. Cell viability of VFECs in response to varying doses of LLLT was investigated by the Cell Counting Kit-8 (CCK-8) method. The most effective irradiation dose was selected to evaluate the cell migration capacity by using the scratch wound-healing assay. Real-time polymerase chain reaction (RT-PCR) was used to detect the gene expression of TGF-β1, TGF-β3, EGF, IL-6, and IL-10. Irradiation with doses of 8 J/cm2 resulted in 4% increases in cell proliferation differing significantly from the control group (p < 0.05). With subsequent doses at 48 and 72 h after irradiation, the differences between the experimental and the control groups became greater, up to 9.8% (p < 0.001) and 19.5% (p < 0.001), respectively. It also increased cell migration and the expression of some genes, such as EGF, TGF-β1, TGF-β3, and IL-10, involved in the tissue healing process. This study concludes that LLLT at the preset parameters was capable of stimulating the proliferation and migration of human vocal fold epithelial cells in culture as well as increase the expression of some genes involved in tissue healing process. Additionally, successive laser treatments at 24 h intervals have an additive beneficial effect on the healing of injured tissues.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 15%
Student > Master 6 13%
Student > Doctoral Student 4 8%
Student > Bachelor 3 6%
Professor 3 6%
Other 8 17%
Unknown 17 35%
Readers by discipline Count As %
Medicine and Dentistry 16 33%
Nursing and Health Professions 5 10%
Biochemistry, Genetics and Molecular Biology 2 4%
Engineering 2 4%
Linguistics 1 2%
Other 5 10%
Unknown 17 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2018.
All research outputs
#17,990,409
of 23,103,903 outputs
Outputs from Lasers in Medical Science
#829
of 1,323 outputs
Outputs of similar age
#243,878
of 340,695 outputs
Outputs of similar age from Lasers in Medical Science
#11
of 27 outputs
Altmetric has tracked 23,103,903 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,323 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,695 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.