↓ Skip to main content

Accuracy of genotype imputation based on random and selected reference sets in purebred and crossbred sheep populations and its effect on accuracy of genomic prediction

Overview of attention for article published in Genetics Selection Evolution, December 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Accuracy of genotype imputation based on random and selected reference sets in purebred and crossbred sheep populations and its effect on accuracy of genomic prediction
Published in
Genetics Selection Evolution, December 2015
DOI 10.1186/s12711-015-0175-8
Pubmed ID
Authors

Nasir Moghaddar, Klint P. Gore, Hans D. Daetwyler, Ben J. Hayes, Julius H. J. van der Werf

Abstract

The objectives of this study were to investigate the accuracy of genotype imputation from low (12k) to medium (50k Illumina-Ovine) SNP (single nucleotide polymorphism) densities in purebred and crossbred Merino sheep based on a random or selected reference set and to evaluate the impact of using imputed genotypes on accuracy of genomic prediction. Imputation validation sets were composed of random purebred or crossbred Merinos, while imputation reference sets were of variable sizes and included random purebred or crossbred Merinos or a group of animals that were selected based on high genetic relatedness to animals in the validation set. The Beagle software program was used for imputation and accuracy of imputation was assessed based on the Pearson correlation coefficient between observed and imputed genotypes. Genomic evaluation was performed based on genomic best linear unbiased prediction and its accuracy was evaluated as the Pearson correlation coefficient between genomic estimated breeding values using either observed (12k/50k) or imputed genotypes with varying levels of imputation accuracy and accurate estimated breeding values based on progeny-tests. Imputation accuracy increased as the size of the reference set increased. However, accuracy was higher for purebred Merinos that were imputed from other purebred Merinos (on average 0.90 to 0.95 based on 1000 to 3000 animals) than from crossbred Merinos (0.78 to 0.87 based on 1000 to 3000 animals) or from non-Merino purebreds (on average 0.50). The imputation accuracy for crossbred Merinos based on 1000 to 3000 other crossbred Merino ranged from 0.86 to 0.88. Considerably higher imputation accuracy was observed when a selected reference set with a high genetic relationship to target animals was used vs. a random reference set of the same size (0.96 vs. 0.88, respectively). Accuracy of genomic prediction based on 50k genotypes imputed with high accuracy (0.88 to 0.99) decreased only slightly (0.0 to 0.67 % across traits) compared to using observed 50k genotypes. Accuracy of genomic prediction based on observed 12k genotypes was higher than accuracy based on lowly accurate (0.62 to 0.86) imputed 50k genotypes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 2%
Denmark 1 2%
Unknown 41 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 23%
Student > Ph. D. Student 6 14%
Student > Doctoral Student 5 12%
Student > Master 5 12%
Other 5 12%
Other 5 12%
Unknown 7 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 63%
Biochemistry, Genetics and Molecular Biology 3 7%
Medicine and Dentistry 2 5%
Computer Science 1 2%
Social Sciences 1 2%
Other 1 2%
Unknown 8 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 December 2015.
All research outputs
#20,655,488
of 25,373,627 outputs
Outputs from Genetics Selection Evolution
#667
of 822 outputs
Outputs of similar age
#292,286
of 396,423 outputs
Outputs of similar age from Genetics Selection Evolution
#12
of 18 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 822 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 6th percentile – i.e., 6% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,423 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.