↓ Skip to main content

Pancreatic glucose-dependent insulinotropic polypeptide (GIP) (1–30) expression is upregulated in diabetes and PEGylated GIP(1–30) can suppress the progression of low-dose-STZ-induced hyperglycaemia…

Overview of attention for article published in Diabetologia, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
21 Mendeley
Title
Pancreatic glucose-dependent insulinotropic polypeptide (GIP) (1–30) expression is upregulated in diabetes and PEGylated GIP(1–30) can suppress the progression of low-dose-STZ-induced hyperglycaemia in mice
Published in
Diabetologia, December 2015
DOI 10.1007/s00125-015-3842-y
Pubmed ID
Authors

Tsuyoshi Yanagimachi, Yukihiro Fujita, Yasutaka Takeda, Jun Honjo, Kuralay K. Atageldiyeva, Yumi Takiyama, Atsuko Abiko, Yuichi Makino, Timothy J. Kieffer, Masakazu Haneda

Abstract

Glucose-dependent insulinotropic polypeptide (GIP) is a peptide hormone released from gut K cells. While the predominant form is GIP(1-42), a shorter form, GIP(1-30), is produced by pancreatic alpha cells and promotes insulin secretion in a paracrine manner. Here, we elucidated whether GIP(1-30) expression is modulated in mouse models of diabetes. We then investigated whether PEGylated GIP(1-30) can improve islet function and morphology as well as suppress the progression to hyperglycaemia in mice treated with low-dose streptozotocin (LD-STZ). We examined pancreatic GIP immunoreactivity in rodent diabetic models. We synthesised [D-Ala(2)]GIP(1-30) and modified the C-terminus with polyethylene glycol (PEG) to produce a dipeptidyl peptidase-4 (DPP-4)-resistant long-acting GIP analogue, [D-Ala(2)]GIP(1-30)-PEG. We performed i.p.GTT and immunohistochemical analysis in non-diabetic and LD-STZ diabetic mice, with or without administration of [D-Ala(2)]GIP(1-30)-PEG. Pancreatic GIP expression was concomitantly enhanced with alpha cell expansion in rodent models of diabetes. Treatment with DPP-4 inhibitor decreased both the GIP- and glucagon-positive areas and preserved the insulin-positive area in LD-STZ diabetic mice. Body weight was not affected by [D-Ala(2)]GIP(1-30)-PEG in LD-STZ or non-diabetic mice. Treatment with GIP significantly ameliorated chronic hyperglycaemia and improved glucose excursions in LD-STZ mice. Treatment with GIP also reduced alpha cell expansion in the islets and suppressed plasma glucagon levels compared with non-treated LD-STZ mice. Additionally, [D-Ala(2)]GIP(1-30)-PEG preserved beta cell area via inhibition of apoptosis in LD-STZ mice. Our data suggest that GIP(1-30) expression is upregulated in diabetes, and PEGylated GIP(1-30) can suppress the progression to STZ-induced hyperglycaemia by inhibiting beta cell apoptosis and alpha cell expansion.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 24%
Student > Ph. D. Student 5 24%
Student > Master 3 14%
Student > Bachelor 1 5%
Student > Postgraduate 1 5%
Other 0 0%
Unknown 6 29%
Readers by discipline Count As %
Medicine and Dentistry 7 33%
Biochemistry, Genetics and Molecular Biology 3 14%
Agricultural and Biological Sciences 2 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Nursing and Health Professions 1 5%
Other 0 0%
Unknown 7 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 March 2016.
All research outputs
#14,496,834
of 23,656,895 outputs
Outputs from Diabetologia
#4,404
of 5,145 outputs
Outputs of similar age
#202,380
of 393,888 outputs
Outputs of similar age from Diabetologia
#49
of 70 outputs
Altmetric has tracked 23,656,895 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,145 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 23.4. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,888 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 70 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.