↓ Skip to main content

Simvastatin and a Plant Galactolipid Protect Animals from Septic Shock by Regulating Oxylipin Mediator Dynamics through the MAPK-cPLA2 Signaling Pathway

Overview of attention for article published in Molecular Medicine, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
17 Mendeley
Title
Simvastatin and a Plant Galactolipid Protect Animals from Septic Shock by Regulating Oxylipin Mediator Dynamics through the MAPK-cPLA2 Signaling Pathway
Published in
Molecular Medicine, December 2015
DOI 10.2119/molmed.2015.00082
Pubmed ID
Authors

Maria Karmella Apaya, Chih-Yu Lin, Ching-Yi Chiou, Chung-Chih Yang, Chen-Yun Ting, Lie-Fen Shyur

Abstract

Sepsis remains a major medical issue despite decades of research. Identification of important inflammatory cascades and key molecular mediators are crucial for developing intervention and prevention strategies. In this study, we conducted a comparative oxylipin metabolomics study to gain a comprehensive picture of lipid mediator dynamics during the initial hyper-inflammatory phase of sepsis, and demonstrated, in parallel, the efficacy of simvastatin and plant galactolipid, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG) in the homeostatic regulation of the oxylipin metabolome using a lipopolysaccharide (LPS)-induced sepsis C57BL/6J mouse model. LPS increased the systemic and organ levels of pro-inflammatory metabolites of linoleic acid including leukotoxin diols, i.e., 9,10-DHOME, 12,13-DHOME, and octadecadienoic acids, i.e., 9-HODE and 13-HODE; and arachidonic acid-derived prostanoid, PGE2, and hydroxyeicosatetraenoic acids, i.e., 8, 12- and 15-HETE. Treatment with either compound decreased the levels of pro-inflammatory metabolites and elevated pro-resolution lipoxin A4, 5(6)-EET, 11(12)-EET and 15-deoxy-PGJ2. dLGG and simvastatin ameliorated the effects of LPS-induced MAPK-dependent activation of cPLA2, cyclooxygenase-2, lipoxygenase, cytochrome P450, and/or epoxide hydrolase, lowered systemic TNF-α and IL-6 levels and aminotransferase activities and decreased organ-specific infiltration of inflammatory leukocytes and macrophages, and septic shock-induced multiple organ damage. Furthermore, both dLGG and simvastatin increased the survival rates in the cecal ligation and puncture (CLP) sepsis model. This study provides new insights into the role of oxylipins in sepsis pathogenesis and highlights the potential of simvastatin and dLGG in sepsis therapy and prevention.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 6%
Unknown 16 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 24%
Student > Ph. D. Student 3 18%
Student > Master 2 12%
Professor > Associate Professor 1 6%
Unspecified 1 6%
Other 0 0%
Unknown 6 35%
Readers by discipline Count As %
Medicine and Dentistry 4 24%
Immunology and Microbiology 2 12%
Unspecified 1 6%
Agricultural and Biological Sciences 1 6%
Business, Management and Accounting 1 6%
Other 2 12%
Unknown 6 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 December 2015.
All research outputs
#18,433,196
of 22,836,570 outputs
Outputs from Molecular Medicine
#913
of 1,139 outputs
Outputs of similar age
#281,474
of 389,737 outputs
Outputs of similar age from Molecular Medicine
#10
of 21 outputs
Altmetric has tracked 22,836,570 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,139 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.2. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 389,737 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.