↓ Skip to main content

Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease

Overview of attention for article published in Neural Plasticity, December 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
84 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease
Published in
Neural Plasticity, December 2015
DOI 10.1155/2016/3423267
Pubmed ID
Authors

Refik Kanjhan, Peter G. Noakes, Mark C. Bellingham

Abstract

Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1(G93A)) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 84 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 2%
Spain 1 1%
France 1 1%
Unknown 80 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 20%
Student > Master 16 19%
Researcher 9 11%
Student > Bachelor 9 11%
Student > Postgraduate 6 7%
Other 16 19%
Unknown 11 13%
Readers by discipline Count As %
Neuroscience 31 37%
Agricultural and Biological Sciences 16 19%
Medicine and Dentistry 8 10%
Biochemistry, Genetics and Molecular Biology 7 8%
Engineering 4 5%
Other 4 5%
Unknown 14 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 February 2022.
All research outputs
#14,388,554
of 25,374,647 outputs
Outputs from Neural Plasticity
#421
of 1,054 outputs
Outputs of similar age
#189,036
of 399,621 outputs
Outputs of similar age from Neural Plasticity
#41
of 106 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,054 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 399,621 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 106 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.