↓ Skip to main content

Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production

Overview of attention for article published in Metabolomics, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
71 Mendeley
Title
Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production
Published in
Metabolomics, January 2016
DOI 10.1007/s11306-015-0940-2
Pubmed ID
Authors

Shingo Noguchi, Sastia P. Putri, Ethan I. Lan, Walter A. Laviña, Yudai Dempo, Takeshi Bamba, James C. Liao, Eiichiro Fukusaki

Abstract

Cyanobacterial 1-butanol production is an important model system for direct conversion of CO2 to fuels and chemicals. Metabolically-engineered cyanobacteria introduced with a heterologous Coenzyme A (CoA)-dependent pathway modified from Clostridium species can convert atmospheric CO2 into 1-butanol. Efforts to optimize the 1-butanol pathway in Synechococcus elongatus PCC 7942 have focused on the improvement of the CoA-dependent pathway thus, probing the in vivo metabolic state of the CoA-dependent pathway is essential for identifying its limiting steps. In this study, we performed quantitative target analysis and kinetic profiling of acyl-CoAs in the CoA-dependent pathway by reversed phase ion-pair liquid chromatography-triple quadrupole mass spectrometry. Using (13)C-labelled cyanobacterial cell extract as internal standard, measurement of the intracellular concentration of acyl-CoAs revealed that the reductive reaction of butanoyl-CoA to butanal is a possible rate-limiting step. In addition, improvement of the butanoyl-CoA to butanal reaction resulted in an increased rate of acetyl-CoA synthesis by possibly compensating for the limitation of free CoA species. We inferred that the efficient recycling of free CoA played a key role in enhancing the conversion of pyruvate to acetyl-CoA.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 1%
Spain 1 1%
Sweden 1 1%
Unknown 68 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 24%
Researcher 14 20%
Student > Bachelor 6 8%
Student > Doctoral Student 5 7%
Student > Master 5 7%
Other 10 14%
Unknown 14 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 38%
Biochemistry, Genetics and Molecular Biology 11 15%
Engineering 7 10%
Chemistry 4 6%
Chemical Engineering 2 3%
Other 5 7%
Unknown 15 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2016.
All research outputs
#14,366,444
of 24,143,470 outputs
Outputs from Metabolomics
#701
of 1,342 outputs
Outputs of similar age
#197,877
of 401,899 outputs
Outputs of similar age from Metabolomics
#22
of 36 outputs
Altmetric has tracked 24,143,470 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,342 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 401,899 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.