↓ Skip to main content

Conformational Sampling and Binding Site Assessment of Suppression of Tumorigenicity 2 Ectodomain

Overview of attention for article published in PLOS ONE, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page
reddit
1 Redditor

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Conformational Sampling and Binding Site Assessment of Suppression of Tumorigenicity 2 Ectodomain
Published in
PLOS ONE, January 2016
DOI 10.1371/journal.pone.0146522
Pubmed ID
Authors

Chao-Yie Yang, James Delproposto, Krishnapriya Chinnaswamy, William Clay Brown, Shuying Wang, Jeanne A. Stuckey, Xinquan Wang

Abstract

Suppression of Tumorigenicity 2 (ST2), a member of the interleukin-1 receptor (IL-1R) family, activates type 2 immune responses to pathogens and tissue damage via binding to IL-33. Dysregulated responses contribute to asthma, graft-versus-host and autoinflammatory diseases and disorders. To study ST2 structure for inhibitor development, we performed the principal component (PC) analysis on the crystal structures of IL1-1R1, IL1-1R2, ST2 and the refined ST2 ectodomain (ST2ECD) models, constructed from previously reported small-angle X-ray scattering data. The analysis facilitates mapping of the ST2ECD conformations to PC subspace for characterizing structural changes. Extensive coverage of ST2ECD conformations was then obtained using the accelerated molecular dynamics simulations started with the IL-33 bound ST2ECD structure as instructed by their projected locations on the PC subspace. Cluster analysis of all conformations further determined representative conformations of ST2ECD ensemble in solution. Alignment of the representative conformations with the ST2/IL-33 structure showed that the D3 domain of ST2ECD (containing D1-D3 domains) in most conformations exhibits no clashes with IL-33 in the crystal structure. Our experimental binding data informed that the D1-D2 domain of ST2ECD contributes predominantly to the interaction between ST2ECD and IL-33 underscoring the importance of the D1-D2 domain in binding. Computational binding site assessment revealed one third of the total detected binding sites in the representative conformations may be suitable for binding to potent small molecules. Locations of these sites include the D1-D2 domain ST2ECD and modulation sites conformed to ST2ECD conformations. Our study provides structural models and analyses of ST2ECD that could be useful for inhibitor discovery.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 25%
Student > Ph. D. Student 4 20%
Student > Bachelor 2 10%
Other 2 10%
Student > Master 1 5%
Other 1 5%
Unknown 5 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 15%
Mathematics 2 10%
Agricultural and Biological Sciences 2 10%
Computer Science 2 10%
Medicine and Dentistry 2 10%
Other 4 20%
Unknown 5 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2016.
All research outputs
#14,831,413
of 22,837,982 outputs
Outputs from PLOS ONE
#124,041
of 194,876 outputs
Outputs of similar age
#218,719
of 393,663 outputs
Outputs of similar age from PLOS ONE
#2,883
of 4,916 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 194,876 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.1. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,663 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4,916 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.