↓ Skip to main content

Targeting P-glycoprotein expression and cancer cell energy metabolism: combination of metformin and 2-deoxyglucose reverses the multidrug resistance of K562/Dox cells to doxorubicin

Overview of attention for article published in Tumor Biology, January 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
27 Mendeley
Title
Targeting P-glycoprotein expression and cancer cell energy metabolism: combination of metformin and 2-deoxyglucose reverses the multidrug resistance of K562/Dox cells to doxorubicin
Published in
Tumor Biology, January 2016
DOI 10.1007/s13277-015-4478-8
Pubmed ID
Authors

Chaojun Xue, Changyuan Wang, Qi Liu, Qiang Meng, Huijun Sun, Xiaokui Huo, Xiaodong Ma, Zhihao Liu, Xiaochi Ma, Jinyong Peng, Kexin Liu

Abstract

P-glycoprotein (P-gp) is one of the major obstacles to efficiency of cancer chemotherapy. Here, we investigated whether combination of metformin and 2-deoxyglucose reverses the multidrug resistance (MDR) of K562/Dox cells and tried to elucidate the possible mechanisms. The combination of metformin and 2-deoxyglucose selectively enhanced the cytotoxicity of doxorubicin against K562/Dox cells. Metformin was not a substrate of P-gp but suppressed the elevated level of P-gp in K562/Dox cells. The downregulation of P-gp may be partly attributed to the inhibition of extracellular signal-regulated kinase pathway. The addition of 2-deoxyglucose to metformin initiated a strong metabolic stress in both K562 and K562/Dox cells. Combination of metformin and 2-deoxyglucose inhibited glucose uptake and lactate production in K562 and K562/Dox cells leading to a severe depletion in ATP and a enhanced autophagy. Above all, P-gp substrate selectively aggravated this ATP depletion effect and increased cell apoptosis in K562/Dox cells. In conclusion, metformin decreases P-gp expression in K562/Dox cells via blocking phosphorylation of extracellular signal-regulated kinase. P-gp substrate increases K562/Dox cell apoptosis via aggravating ATP depletion induced by combination of metformin and 2-deoxyglucose. Our observations highlight the importance of combination of metformin and 2-deoxyglucose in reversing multidrug resistance.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 15%
Researcher 4 15%
Student > Bachelor 3 11%
Professor 2 7%
Student > Master 2 7%
Other 4 15%
Unknown 8 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 19%
Pharmacology, Toxicology and Pharmaceutical Science 3 11%
Agricultural and Biological Sciences 3 11%
Medicine and Dentistry 3 11%
Computer Science 1 4%
Other 3 11%
Unknown 9 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2016.
All research outputs
#20,300,248
of 22,837,982 outputs
Outputs from Tumor Biology
#1,834
of 2,622 outputs
Outputs of similar age
#330,512
of 393,663 outputs
Outputs of similar age from Tumor Biology
#184
of 288 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,622 research outputs from this source. They receive a mean Attention Score of 2.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,663 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 288 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.