↓ Skip to main content

A mathematical model for the induction of the mammalian ureteric bud

Overview of attention for article published in Journal of Theoretical Biology, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A mathematical model for the induction of the mammalian ureteric bud
Published in
Journal of Theoretical Biology, January 2016
DOI 10.1016/j.jtbi.2015.12.025
Pubmed ID
Authors

Brodie A.J. Lawson, Mark B. Flegg

Abstract

Congenital abnormalities of the kidney and urinary tract collectively form the most common type of prenatally diagnosed malformations. Whilst many of the crucial genes that direct the kidney developmental program are known, the mechanisms by which kidney organogenesis is achieved is still largely unclear. In this paper, we propose a mathematical model for the localisation of the ureteric bud, the precursor to the ureter and collecting duct system of the kidney. The mathematical model presented fundamentally implicates Schnakenberg-like ligand-receptor Turing patterning as the mechanism by which the ureteric bud is localised on the Wolfian duct as proposed in 2013 by Menshykaul and Iber (2013). This model explores the specific roles of regulatory proteins GREM1 and BMP as well as the domain properties of GDNF production. Our model demonstrates that this proposed pattern formation mechanism is capable of naturally predicting the phenotypical outcomes of many genetic experiments from the literature. Furthermore, we conclude that whilst BMP inhibits GDNF away from the budding site and GREM1 permits GDNF to signal, GREM1 also stabilises the effect of BMP on GDNF signalling from fluctuations in BMP sensitivity but not signal strength.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 60%
Student > Ph. D. Student 2 40%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 40%
Biochemistry, Genetics and Molecular Biology 1 20%
Social Sciences 1 20%
Materials Science 1 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2016.
All research outputs
#16,721,208
of 25,373,627 outputs
Outputs from Journal of Theoretical Biology
#2,475
of 4,010 outputs
Outputs of similar age
#233,161
of 403,314 outputs
Outputs of similar age from Journal of Theoretical Biology
#32
of 63 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,010 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 403,314 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.