↓ Skip to main content

Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology

Overview of attention for article published in Acta Neuropathologica, January 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
5 news outlets
patent
18 patents
googleplus
1 Google+ user

Citations

dimensions_citation
296 Dimensions

Readers on

mendeley
146 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology
Published in
Acta Neuropathologica, January 2016
DOI 10.1007/s00401-016-1539-z
Pubmed ID
Authors

Ibrahim Qaddoumi, Wilda Orisme, Ji Wen, Teresa Santiago, Kirti Gupta, James D. Dalton, Bo Tang, Kelly Haupfear, Chandanamali Punchihewa, John Easton, Heather Mulder, Kristy Boggs, Ying Shao, Michael Rusch, Jared Becksfort, Pankaj Gupta, Shuoguo Wang, Ryan P. Lee, Daniel Brat, V. Peter Collins, Sonika Dahiya, David George, William Konomos, Kathreena M. Kurian, Kathryn McFadden, Luciano Neder Serafini, Hilary Nickols, Arie Perry, Sheila Shurtleff, Amar Gajjar, Fredrick A. Boop, Paul D. Klimo, Elaine R. Mardis, Richard K. Wilson, Suzanne J. Baker, Jinghui Zhang, Gang Wu, James R. Downing, Ruth G. Tatevossian, David W. Ellison

Abstract

Low-grade neuroepithelial tumors (LGNTs) are diverse CNS tumors presenting in children and young adults, often with a history of epilepsy. While the genetic profiles of common LGNTs, such as the pilocytic astrocytoma and 'adult-type' diffuse gliomas, are largely established, those of uncommon LGNTs remain to be defined. In this study, we have used massively parallel sequencing and various targeted molecular genetic approaches to study alterations in 91 LGNTs, mostly from children but including young adult patients. These tumors comprise dysembryoplastic neuroepithelial tumors (DNETs; n = 22), diffuse oligodendroglial tumors (d-OTs; n = 20), diffuse astrocytomas (DAs; n = 17), angiocentric gliomas (n = 15), and gangliogliomas (n = 17). Most LGNTs (84 %) analyzed by whole-genome sequencing (WGS) were characterized by a single driver genetic alteration. Alterations of FGFR1 occurred frequently in LGNTs composed of oligodendrocyte-like cells, being present in 82 % of DNETs and 40 % of d-OTs. In contrast, a MYB-QKI fusion characterized almost all angiocentric gliomas (87 %), and MYB fusion genes were the most common genetic alteration in DAs (41 %). A BRAF:p.V600E mutation was present in 35 % of gangliogliomas and 18 % of DAs. Pathogenic alterations in FGFR1/2/3, BRAF, or MYB/MYBL1 occurred in 78 % of the series. Adult-type d-OTs with an IDH1/2 mutation occurred in four adolescents, the youngest aged 15 years at biopsy. Despite a detailed analysis, novel genetic alterations were limited to two fusion genes, EWSR1-PATZ1 and SLMAP-NTRK2, both in gangliogliomas. Alterations in BRAF, FGFR1, or MYB account for most pathogenic alterations in LGNTs, including pilocytic astrocytomas, and alignment of these genetic alterations and cytologic features across LGNTs has diagnostic implications. Additionally, therapeutic options based upon targeting the effects of these alterations are already in clinical trials.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 146 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 2 1%
Spain 1 <1%
United States 1 <1%
Czechia 1 <1%
Unknown 141 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 28 19%
Other 13 9%
Student > Master 13 9%
Student > Bachelor 13 9%
Student > Ph. D. Student 11 8%
Other 27 18%
Unknown 41 28%
Readers by discipline Count As %
Medicine and Dentistry 44 30%
Biochemistry, Genetics and Molecular Biology 18 12%
Neuroscience 14 10%
Agricultural and Biological Sciences 9 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 1%
Other 10 7%
Unknown 49 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 39. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 November 2022.
All research outputs
#924,369
of 23,577,654 outputs
Outputs from Acta Neuropathologica
#136
of 2,407 outputs
Outputs of similar age
#17,779
of 399,815 outputs
Outputs of similar age from Acta Neuropathologica
#3
of 37 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,407 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 399,815 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.