↓ Skip to main content

Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis

Overview of attention for article published in Brain Structure and Function, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
2 Facebook pages

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
59 Mendeley
Title
Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis
Published in
Brain Structure and Function, February 2016
DOI 10.1007/s00429-016-1188-y
Pubmed ID
Authors

Sarah Hescham, Yasin Temel, Sandra Schipper, Mélanie Lagiere, Lisa-Maria Schönfeld, Arjan Blokland, Ali Jahanshahi

Abstract

Deep brain stimulation (DBS) is an established symptomatic treatment modality for movement disorders and constitutes an emerging therapeutic approach for the treatment of memory impairment. In line with this, fornix DBS has shown to ameliorate cognitive decline associated with dementia. Nonetheless, mechanisms mediating clinical effects in demented patients or patients with other neurological disorders are largely unknown. There is evidence that DBS is able to modulate neurophysiological activity in targeted brain regions. We therefore hypothesized that DBS might be able to influence cognitive function via activity-dependent regulation of hippocampal neurogenesis. Using stimulation parameters, which were validated to restore memory loss in a previous behavioral study, we here assessed long-term effects of fornix DBS. To do so, we injected the thymidine analog, 5-bromo-2'-deoxyuridine (BrdU), after DBS and perfused the animals 6.5 weeks later. A week prior to perfusion, memory performance was assessed in the water maze. We found that acute stimulation of the fornix improved spatial memory performance in the water maze when the probe trial was performed 1 h after the last training session. However, no evidence for stimulation-induced neurogenesis was found in fornix DBS rats when compared to sham. Our results suggest that fornix DBS improves memory functions independent of hippocampal neurogenesis, possibly through other mechanisms such as synaptic plasticity and acute neurotransmitter release.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 2%
Unknown 58 98%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 10 17%
Researcher 9 15%
Student > Ph. D. Student 6 10%
Student > Master 6 10%
Other 5 8%
Other 12 20%
Unknown 11 19%
Readers by discipline Count As %
Neuroscience 19 32%
Biochemistry, Genetics and Molecular Biology 5 8%
Psychology 5 8%
Agricultural and Biological Sciences 5 8%
Medicine and Dentistry 4 7%
Other 7 12%
Unknown 14 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2017.
All research outputs
#19,015,393
of 24,217,893 outputs
Outputs from Brain Structure and Function
#1,150
of 1,725 outputs
Outputs of similar age
#280,000
of 405,667 outputs
Outputs of similar age from Brain Structure and Function
#22
of 34 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 405,667 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.