↓ Skip to main content

A method for using real world data in breast cancer modeling

Overview of attention for article published in Journal of Biomedical Informatics, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
109 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A method for using real world data in breast cancer modeling
Published in
Journal of Biomedical Informatics, February 2016
DOI 10.1016/j.jbi.2016.01.017
Pubmed ID
Authors

Monika Pobiruchin, Sylvia Bochum, Uwe M. Martens, Meinhard Kieser, Wendelin Schramm

Abstract

Today, hospitals and other health care-related institutions are accumulating a growing bulk of real world clinical data. Such data offer new possibilities for the generation of disease models for the health economic evaluation. In this article, we propose a new approach to leverage cancer registry data for the development of Markov models. Records of breast cancer patients from a clinical cancer registry were used to construct a real world data driven disease model. We describe a model generation process which maps database structures to disease state definitions based on medical expert knowledge. Software was programmed in Java to automatically derive a model structure and transition probabilities. We illustrate our method with the reconstruction of a published breast cancer reference model derived primarily from clinical study data. In doing so, we exported longitudinal patient data from a clinical cancer registry covering eight years. The patient cohort (n=892) comprised HER2-positive and HER2-negative women treated with or without Trastuzumab. The models generated with this method for the respective patient cohorts were comparable to the reference model in their structure and treatment effects. However, our computed disease models reflect a more detailed picture of the transition probabilities, especially for disease free survival and recurrence. Our work presents an approach to extract Markov models semi-automatically using real world data from a clinical cancer registry. Health care decision makers may benefit from more realistic disease models to improve health care-related planning and actions based on their own data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 109 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 109 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 16%
Student > Bachelor 16 15%
Student > Master 13 12%
Researcher 9 8%
Student > Doctoral Student 6 6%
Other 25 23%
Unknown 23 21%
Readers by discipline Count As %
Medicine and Dentistry 22 20%
Computer Science 15 14%
Nursing and Health Professions 7 6%
Pharmacology, Toxicology and Pharmaceutical Science 7 6%
Engineering 6 6%
Other 28 26%
Unknown 24 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 April 2017.
All research outputs
#15,739,010
of 25,371,288 outputs
Outputs from Journal of Biomedical Informatics
#1,359
of 2,247 outputs
Outputs of similar age
#217,170
of 407,690 outputs
Outputs of similar age from Journal of Biomedical Informatics
#26
of 51 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,247 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 407,690 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.