↓ Skip to main content

Emulating constant acceleration locomotion mechanics on a treadmill

Overview of attention for article published in Journal of Biomechanics, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Emulating constant acceleration locomotion mechanics on a treadmill
Published in
Journal of Biomechanics, February 2016
DOI 10.1016/j.jbiomech.2016.01.030
Pubmed ID
Authors

Dominic James Farris

Abstract

Locomotion on an accelerating treadmill belt is not dynamically similar to overground acceleration. The purpose of this study was to test if providing an external force to compensate for inertial forces during locomotion on an accelerating treadmill belt could induce locomotor dynamics similar to real accelerations. Nine males (mean±sd age=26±4 years, mass=81±9kg, height=1.8±0.05m) began walking and transitioned to running on an accelerating instrumented treadmill belt at three accelerations (0.27ms(-2), 0.42ms(-2), 0.76ms(-2)). Half the trials were typical treadmill locomotion (TT) and half were emulated acceleration (EA), where elastic tubing harnessed to the participant provided a horizontal force equal to mass multiplied by acceleration. Net mechanical work (WCOM) and ground reaction force impulses (IGRF) were calculated for individual steps and a linear regression was performed with these experimental measures as independent variables and theoretically derived values of work and impulse as predictor variables. For EA, linear fits were significant for WCOM (y=1.19x+10.5, P<0.001, R(2)=0.41) and IGRF (y=0.95x+8.1, P<0.001, R(2)=0.3). For TT, linear fits were not significant and explained virtually no variance for WCOM (y=0.06x+1.6, P=0.29, R(2)<0.01) and IGRF (y=0.10x+0.4, P=0.06, R(2)=0.01). This suggested that the EA condition was a better representation of real acceleration dynamics than TT. Running steps from EA where work and impulse closely matched theoretical values showed similar adaptations to increasing acceleration as have been previously observed overground (forward reorientation of GRF vector without an increase in magnitude or change in spatio-temporal metrics).

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Malaysia 1 3%
Unknown 35 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 31%
Student > Bachelor 4 11%
Student > Doctoral Student 3 8%
Lecturer 3 8%
Researcher 3 8%
Other 6 17%
Unknown 6 17%
Readers by discipline Count As %
Engineering 8 22%
Sports and Recreations 5 14%
Nursing and Health Professions 4 11%
Medicine and Dentistry 3 8%
Neuroscience 3 8%
Other 2 6%
Unknown 11 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 February 2016.
All research outputs
#16,722,190
of 25,374,917 outputs
Outputs from Journal of Biomechanics
#4,075
of 5,357 outputs
Outputs of similar age
#237,659
of 409,928 outputs
Outputs of similar age from Journal of Biomechanics
#41
of 78 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,357 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 409,928 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 78 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.