↓ Skip to main content

A remorin gene is implicated in quantitative disease resistance in maize

Overview of attention for article published in Theoretical and Applied Genetics, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
68 Mendeley
Title
A remorin gene is implicated in quantitative disease resistance in maize
Published in
Theoretical and Applied Genetics, February 2016
DOI 10.1007/s00122-015-2650-6
Pubmed ID
Authors

Tiffany M. Jamann, Xingyu Luo, Laura Morales, Judith M. Kolkman, Chia-Lin Chung, Rebecca J. Nelson

Abstract

Quantitative disease resistance is used by plant breeders to improve host resistance. We demonstrate a role for a maize remorin ( ZmREM6.3 ) in quantitative resistance against northern leaf blight using high-resolution fine mapping, expression analysis, and mutants. This is the first evidence of a role for remorins in plant-fungal interactions. Quantitative disease resistance (QDR) is important for the development of crop cultivars and is particularly useful when loci also confer multiple disease resistance. Despite its widespread use, the underlying mechanisms of QDR remain largely unknown. In this study, we fine-mapped a known quantitative trait locus (QTL) conditioning disease resistance on chromosome 1 of maize. This locus confers resistance to three foliar diseases: northern leaf blight (NLB), caused by the fungus Setosphaeria turcica; Stewart's wilt, caused by the bacterium Pantoea stewartii; and common rust, caused by the fungus Puccinia sorghi. The Stewart's wilt QTL was confined to a 5.26-Mb interval, while the rust QTL was reduced to an overlapping 2.56-Mb region. We show tight linkage between the NLB QTL locus and the loci conferring resistance to Stewart's wilt and common rust. Pleiotropy cannot be excluded for the Stewart's wilt and the common rust QTL, as they were fine-mapped to overlapping regions. Four positional candidate genes within the 243-kb NLB interval were examined with expression and mutant analysis: a gene with homology to an F-box gene, a remorin gene (ZmREM6.3), a chaperonin gene, and an uncharacterized gene. The F-box gene and ZmREM6.3 were more highly expressed in the resistant line. Transposon tagging mutants were tested for the chaperonin and ZmREM6.3, and the remorin mutant was found to be more susceptible to NLB. The putative F-box is a strong candidate, but mutants were not available to test this gene. Multiple lines of evidence strongly suggest a role for ZmREM6.3 in quantitative disease resistance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 1%
Unknown 67 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 28%
Student > Master 10 15%
Researcher 10 15%
Student > Doctoral Student 8 12%
Professor > Associate Professor 3 4%
Other 6 9%
Unknown 12 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 48 71%
Biochemistry, Genetics and Molecular Biology 5 7%
Unspecified 1 1%
Economics, Econometrics and Finance 1 1%
Medicine and Dentistry 1 1%
Other 0 0%
Unknown 12 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 February 2017.
All research outputs
#14,873,797
of 23,794,258 outputs
Outputs from Theoretical and Applied Genetics
#2,756
of 3,565 outputs
Outputs of similar age
#213,706
of 401,194 outputs
Outputs of similar age from Theoretical and Applied Genetics
#23
of 51 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,565 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 401,194 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.