↓ Skip to main content

A Parametric Computational Study of the Impact of Non-circular Configurations on Bioprosthetic Heart Valve Leaflet Deformations and Stresses: Possible Implications for Transcatheter Heart Valves

Overview of attention for article published in Cardiovascular Engineering and Technology, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
27 Mendeley
Title
A Parametric Computational Study of the Impact of Non-circular Configurations on Bioprosthetic Heart Valve Leaflet Deformations and Stresses: Possible Implications for Transcatheter Heart Valves
Published in
Cardiovascular Engineering and Technology, February 2016
DOI 10.1007/s13239-016-0259-9
Pubmed ID
Authors

Nandini Duraiswamy, Jason D. Weaver, Yasamin Ekrami, Stephen M. Retta, Changfu Wu

Abstract

Although generally manufactured as circular devices with symmetric leaflets, transcatheter heart valves can become non-circular post-implantation, the impact of which on the long-term durability of the device is unclear. We investigated the effects of five non-circular (EllipMajor, EllipMinor, D-Shape, TriVertex, TriSides) annular configurations on valve leaflet stresses and valve leaflet deformations through finite element analysis. The highest in-plane principal stresses and strains were observed under an elliptical configuration with an aspect ratio of 1.25 where one of the commissures was on the minor axis of the ellipse. In this elliptical configuration (EllipMinor), the maximum principal stress increased 218% and the maximum principal strain increased 80% as compared with those in the circular configuration, and occurred along the free edge of the leaflet whose commissures were not on the minor axis (i.e., the "stretched" leaflet). The D-Shape configuration was similar to this elliptical configuration, with the degree to which the leaflets were stretched or sagging being less than the EllipMinor configuration. The TriVertex and TriSides configurations had similar leaflet deformation patterns in all three leaflets and similar to the Circular configuration. In the D-Shape, TriVertex, and TriSides configurations, the maximum principal stress was located near the commissures similar to the Circular configuration. In the EllipMinor and EllipMajor configurations, the maximum principal stress occurred near the center of the free edge of the "stretched" leaflets. These results further affirm recommendations by the International Standards Organization (ISO) that pre-clinical testing should consider non-circular configurations for transcatheter valve durability testing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 19%
Student > Bachelor 5 19%
Researcher 4 15%
Student > Master 3 11%
Other 2 7%
Other 2 7%
Unknown 6 22%
Readers by discipline Count As %
Engineering 12 44%
Medicine and Dentistry 5 19%
Mathematics 1 4%
Earth and Planetary Sciences 1 4%
Social Sciences 1 4%
Other 2 7%
Unknown 5 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 April 2016.
All research outputs
#13,762,875
of 22,846,662 outputs
Outputs from Cardiovascular Engineering and Technology
#77
of 174 outputs
Outputs of similar age
#199,899
of 400,522 outputs
Outputs of similar age from Cardiovascular Engineering and Technology
#4
of 7 outputs
Altmetric has tracked 22,846,662 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 174 research outputs from this source. They receive a mean Attention Score of 3.7. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 400,522 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.