↓ Skip to main content

Effects of the enlargement of polyglutamine segments on the structure and folding of ataxin-2 and ataxin-3 proteins

Overview of attention for article published in Journal of Biomolecular Structure and Dynamics, May 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of the enlargement of polyglutamine segments on the structure and folding of ataxin-2 and ataxin-3 proteins
Published in
Journal of Biomolecular Structure and Dynamics, May 2016
DOI 10.1080/07391102.2016.1152199
Pubmed ID
Authors

Jingran Wen, Daniel R. Scoles, Julio C. Facelli

Abstract

Spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3) are two common autosomal-dominant inherited ataxia syndromes, both of which are related to the unstable expansion of tri-nucleotide CAG repeats in the coding region of the related ATXN2 and ATXN3 genes, respectively. The poly-glutamine (poly-Q) tract encoded by the CAG repeats has long been recognized as an important factor in disease pathogenesis and progress. In this study, using the I-TASSER method for 3D structure prediction, we investigated the effect of poly-Q tract enlargement on the structure and folding of ataxin-2 and ataxin-3 proteins. Our results show good agreement with the known experimental structures of the Josephin and UIM domains providing credence to the simulation results presented here, which show that the enlargement of the poly-Q region not only affects the local structure of these regions but also affects the structures of functional domains as well as the whole protein. The changes observed in the predicted models of the UIM domains in ataxin-3 when the poly-Q track is enlarged provide new insights on possible pathogenic mechanisms.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 17%
Student > Ph. D. Student 4 17%
Other 3 13%
Student > Master 3 13%
Researcher 3 13%
Other 3 13%
Unknown 4 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 33%
Agricultural and Biological Sciences 5 21%
Medicine and Dentistry 3 13%
Neuroscience 3 13%
Engineering 1 4%
Other 0 0%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 February 2016.
All research outputs
#20,306,690
of 22,846,662 outputs
Outputs from Journal of Biomolecular Structure and Dynamics
#1,578
of 2,157 outputs
Outputs of similar age
#286,224
of 333,191 outputs
Outputs of similar age from Journal of Biomolecular Structure and Dynamics
#19
of 31 outputs
Altmetric has tracked 22,846,662 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,157 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,191 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.