↓ Skip to main content

A Pure Life: The Microbial Ecology of High Purity Industrial Waters

Overview of attention for article published in Microbial Ecology, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
44 Mendeley
Title
A Pure Life: The Microbial Ecology of High Purity Industrial Waters
Published in
Microbial Ecology, February 2016
DOI 10.1007/s00248-016-0736-6
Pubmed ID
Authors

M. W. Mittelman, A. D. G. Jones

Abstract

The microbial ecology of various natural environments has been an active area of research since the earlier part of the twentieth century. Remote and sometimes extreme environments such as the deep ocean and the deep terrestrial subsurface have revealed a remarkable array of microorganisms. The majority of these environments are nutrient limited, and microorganisms-principally, bacteria-have developed a number of survival strategies that enable their survival and, in some cases, replication. While planktonic microorganisms exist in oligotrophic environments, the predominant mode of survival and growth is associated with biofilms. There are a number of similarities between the physicochemistry of industrial water systems and some natural aquatic ecosystems, and these similarities extend to the microbial populations and the survival mechanisms that are employed. The "starvation-survival" mechanisms, including biofilm formation, may be associated with deleterious effects on industrial water systems. These effects include heat transfer inhibition, microbially influenced corrosion, and contamination of various products manufactured in a wide array of industries. Biological fouling of industrial water systems has significant direct and indirect (through antimicrobial chemical applications) impacts on engineered materials and on the etiology of some waterborne diseases. This review provides an overview of the microbial ecology of purified waters and discusses the impacts of biological activity on industrial systems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 18%
Researcher 7 16%
Student > Ph. D. Student 5 11%
Student > Doctoral Student 3 7%
Student > Bachelor 3 7%
Other 5 11%
Unknown 13 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 14%
Agricultural and Biological Sciences 5 11%
Medicine and Dentistry 3 7%
Engineering 3 7%
Computer Science 2 5%
Other 8 18%
Unknown 17 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 February 2016.
All research outputs
#15,866,607
of 23,577,654 outputs
Outputs from Microbial Ecology
#1,490
of 2,090 outputs
Outputs of similar age
#241,944
of 406,382 outputs
Outputs of similar age from Microbial Ecology
#20
of 31 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,090 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 406,382 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.