↓ Skip to main content

Bootstrapping variables in algebraic circuits

Overview of attention for article published in Proceedings of the National Academy of Sciences of the United States of America, April 2019
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
11 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bootstrapping variables in algebraic circuits
Published in
Proceedings of the National Academy of Sciences of the United States of America, April 2019
DOI 10.1073/pnas.1901272116
Pubmed ID
Authors

Manindra Agrawal, Sumanta Ghosh, Nitin Saxena

Abstract

We show that for the blackbox polynomial identity testing (PIT) problem it suffices to study circuits that depend only on the first extremely few variables. One needs only to consider size-s degree-s circuits that depend on the first [Formula: see text] variables (where c is a constant and composes a logarithm with itself c times). Thus, the hitting-set generator (hsg) manifests a bootstrapping behavior-a partial hsg against very few variables can be efficiently grown to a complete hsg. A Boolean analog, or a pseudorandom generator property of this type, is unheard of. Our idea is to use the partial hsg and its annihilator polynomial to efficiently bootstrap the hsg exponentially w.r.t. variables. This is repeated c times in an efficient way. Pushing the envelope further we show that (i) a quadratic-time blackbox PIT for 6,913-variate degree-s size-s polynomials will lead to a "near"-complete derandomization of PIT and (ii) a blackbox PIT for n-variate degree-s size-s circuits in [Formula: see text] time, for [Formula: see text], will lead to a near-complete derandomization of PIT (in contrast, [Formula: see text] time is trivial). Our second idea is to study depth-4 circuits that depend on constantly many variables. We show that a polynomial-time computable, [Formula: see text]-degree hsg for trivariate depth-4 circuits bootstraps to a quasipolynomial time hsg for general polydegree circuits and implies a lower bound that is a bit stronger than that of Kabanets and Impagliazzo [Kabanets V, Impagliazzo R (2003) Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing STOC '03].

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 57%
Professor 1 14%
Professor > Associate Professor 1 14%
Other 1 14%
Readers by discipline Count As %
Computer Science 4 57%
Mathematics 1 14%
Nursing and Health Professions 1 14%
Linguistics 1 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 April 2019.
All research outputs
#4,607,586
of 24,622,191 outputs
Outputs from Proceedings of the National Academy of Sciences of the United States of America
#43,931
of 101,438 outputs
Outputs of similar age
#91,031
of 358,469 outputs
Outputs of similar age from Proceedings of the National Academy of Sciences of the United States of America
#634
of 984 outputs
Altmetric has tracked 24,622,191 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 101,438 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.8. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 358,469 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 984 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.