↓ Skip to main content

Advances in Sprint Acceleration Profiling for Field-Based Team-Sport Athletes: Utility, Reliability, Validity and Limitations

Overview of attention for article published in Sports Medicine, February 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
60 X users

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
228 Mendeley
Title
Advances in Sprint Acceleration Profiling for Field-Based Team-Sport Athletes: Utility, Reliability, Validity and Limitations
Published in
Sports Medicine, February 2016
DOI 10.1007/s40279-016-0508-y
Pubmed ID
Authors

Kim D. Simperingham, John B. Cronin, Angus Ross

Abstract

Advanced testing technologies enable insight into the kinematic and kinetic determinants of sprint acceleration performance, which is particularly important for field-based team-sport athletes. Establishing the reliability and validity of the data, particularly from the acceleration phase, is important for determining the utility of the respective technologies. The aim of this systematic review was to explain the utility, reliability, validity and limitations of (1) radar and laser technology, and (2) non-motorised treadmill (NMT) and torque treadmill (TT) technology for providing kinematic and kinetic measures of sprint acceleration performance. A comprehensive search of the CINAHL Plus, MEDLINE (EBSCO), PubMed, SPORTDiscus, and Web of Science databases was conducted using search terms that included radar, laser, non-motorised treadmill, torque treadmill, sprint, acceleration, kinetic, kinematic, force, and power. Studies examining the kinematics or kinetics of short (≤10 s), maximal-effort sprint acceleration in adults or children, which included an assessment of reliability or validity of the advanced technologies of interest, were included in this systematic review. Absolute reliability, relative reliability and validity data were extracted from the selected articles and tabulated. The level of acceptance of reliability was a coefficient of variation (CV) ≤10 % and an intraclass correlation coefficient (ICC) or correlation coefficient (r) ≥0.70. A total of 34 studies met the inclusion criteria and were included in the qualitative analysis. Generally acceptable validity (r = 0.87-0.99; absolute bias 3-7 %), intraday reliability (CV ≤9.5 %; ICC/r ≥0.84) and interday reliability (ICC ≥0.72) were reported for data from radar and laser. However, low intraday reliability was reported for the theoretical maximum horizontal force (ICC 0.64) within adolescent athletes, and low validity was reported for velocity during the initial 5 m of a sprint acceleration (bias up to 0.41 m/s) measured with a laser device. Acceptable reliability of results from NMT and TT was only ensured when testing protocols involved sufficient familiarisation, a high sampling rate (≥200 Hz), a 'blocked' start position, and the analysis of discrete steps rather than arbitrary time periods. Sprinting times and speeds were 20-28 % slower on a TT, 28-67 % slower on an NMT, and only 9-64 % of the variance in overground measurements of speed and time (≤30 m) was explained by results from an NMT. There have been no reports to date of criterion validity of kinetic measures of sprint acceleration performance on NMT andTT, and only limited results regarding acceptable concurrent validity of radar-derived kinetic data. Radar, laser, NMT and TT technologies can be used to reliably measure sprint acceleration performance and to provide insight into the determinants of sprinting speed. However, further research is required to establish the validity of the kinetic measurements made with NMT and TT. Radar and laser technology may not be suitable for measuring the first few steps of a sprint acceleration.

X Demographics

X Demographics

The data shown below were collected from the profiles of 60 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 228 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 <1%
Unknown 227 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 48 21%
Student > Ph. D. Student 25 11%
Student > Bachelor 25 11%
Researcher 18 8%
Other 12 5%
Other 52 23%
Unknown 48 21%
Readers by discipline Count As %
Sports and Recreations 129 57%
Medicine and Dentistry 18 8%
Nursing and Health Professions 7 3%
Social Sciences 5 2%
Psychology 4 2%
Other 15 7%
Unknown 50 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 38. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 December 2017.
All research outputs
#1,080,166
of 25,591,967 outputs
Outputs from Sports Medicine
#934
of 2,889 outputs
Outputs of similar age
#18,047
of 313,357 outputs
Outputs of similar age from Sports Medicine
#22
of 55 outputs
Altmetric has tracked 25,591,967 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,889 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 57.1. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,357 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.