↓ Skip to main content

Polyunsaturated fatty acids are potent openers of human M‐channels expressed in Xenopus laevis oocytes

Overview of attention for article published in Acta Physiologica, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Polyunsaturated fatty acids are potent openers of human M‐channels expressed in Xenopus laevis oocytes
Published in
Acta Physiologica, March 2016
DOI 10.1111/apha.12663
Pubmed ID
Authors

S I Liin, U Karlsson, B H Bentzen, N Schmitt, F Elinder

Abstract

Polyunsaturated fatty acids have been reported to reduce neuronal excitability, in part by promoting inactivation of voltage-gated sodium and calcium channels. Effects on neuronal potassium channels are less explored and experimental data ambiguous. The aim of this study was to investigate anti-excitable effects of polyunsaturated fatty acids on the neuronal M-channel, important for setting the resting membrane potential in hippocampal and dorsal root ganglion neurons. Effects of fatty acids and fatty-acid analogues on mouse dorsal root ganglion neurons and on the human KV 7.2/3 channel expressed in Xenopus laevis oocytes were studied using electrophysiology. Extracellular application of physiologically relevant concentrations of the polyunsaturated fatty acid docosahexaenoic acid hyperpolarized the resting membrane potential (-2.4 mV by 30 μM) and increased the threshold current to evoke action potentials in dorsal root ganglion neurons. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid, and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes, by shifting the conductance-versus-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μM). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. These findings suggest that circulating polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty acids reduce neuronal excitability. This article is protected by copyright. All rights reserved.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 15%
Student > Bachelor 4 12%
Student > Ph. D. Student 3 9%
Professor 2 6%
Student > Postgraduate 2 6%
Other 7 21%
Unknown 10 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 15%
Biochemistry, Genetics and Molecular Biology 4 12%
Medicine and Dentistry 4 12%
Neuroscience 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 4 12%
Unknown 12 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 February 2016.
All research outputs
#19,995,718
of 24,571,708 outputs
Outputs from Acta Physiologica
#955
of 1,242 outputs
Outputs of similar age
#226,866
of 305,690 outputs
Outputs of similar age from Acta Physiologica
#25
of 28 outputs
Altmetric has tracked 24,571,708 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,242 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.0. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 305,690 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.