↓ Skip to main content

Validation of real-time polymerase chain reaction tests for diagnosing feline immunodeficiency virus infection in domestic cats using Bayesian latent class models

Overview of attention for article published in Preventive Veterinary Medicine, November 2011
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Validation of real-time polymerase chain reaction tests for diagnosing feline immunodeficiency virus infection in domestic cats using Bayesian latent class models
Published in
Preventive Veterinary Medicine, November 2011
DOI 10.1016/j.prevetmed.2011.10.009
Pubmed ID
Authors

John M. Morton, Richard J. McCoy, Rebecca K.C. Kann, Ian A. Gardner, Joanne Meers

Abstract

The objectives of the current study were to estimate the sensitivity and specificity of three real-time polymerase chain reaction (PCR) tests for diagnosis of feline immunodeficiency virus (FIV) infection in domestic cats, both individually and when interpreted in series with one of two serological tests, separately in populations of cats at low and high risk of being infected with FIV. One PCR test targeted the pol gene and two targeted the gag gene of FIV. For comparison, sensitivities and specificities of the individual serological tests (IDEXX SNAP(®) test and AGEN Simplify(®) test) were also estimated. The study populations consisted of domestic cats thought to be not vaccinated against FIV. Low-risk (males aged 4 years or less and females; n=128) and high-risk (males over 4 years; n=128) cats were selected from those where blood samples were submitted to a commercial clinical pathology service. Bayesian latent class models were used to obtain posterior probability distributions for sensitivity and specificity for each test, based on prior distributions obtained from three experts. Medians of the posterior sensitivity distributions for the PCR tests based on the pol gene and two regions of the gag gene tests ranged from 0.85 to 0.89, compared to 0.89-0.97 for the two serological tests. The medians of posterior specificity distributions for these PCR tests were 0.94-0.96, and 0.95-0.97 for the serological tests. In contrast, the PCR based on one region of the gag gene had lower median sensitivity. Sensitivities of combinations of these serological and PCR tests interpreted in series were low; medians of posterior sensitivity distributions ranged from 0.75 to 0.83. Relative to the low-risk population, median sensitivities in the high-risk population were lower for all tests other than the AGEN Simplify(®) test; specificities were similar in both populations. We conclude that the sensitivities of the two PCR tests based on the pol gene and two regions of the gag gene, respectively, in non-vaccinated cats are probably lower than the sensitivities of the two serological tests we assessed. We do not recommend screening cats whose FIV vaccination status is uncertain with one of these serological tests and then testing positives with one of these PCR tests because in non-vaccinates, the sensitivities of combinations of these serological and PCR tests interpreted in series are low. Assessment of the validity of these PCR assays in FIV-vaccinated cats is required.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 3%
Unknown 35 97%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 6 17%
Student > Master 5 14%
Student > Ph. D. Student 5 14%
Student > Doctoral Student 4 11%
Other 3 8%
Other 6 17%
Unknown 7 19%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 11 31%
Agricultural and Biological Sciences 7 19%
Medicine and Dentistry 2 6%
Business, Management and Accounting 1 3%
Economics, Econometrics and Finance 1 3%
Other 1 3%
Unknown 13 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 February 2012.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from Preventive Veterinary Medicine
#1,772
of 2,047 outputs
Outputs of similar age
#224,270
of 244,458 outputs
Outputs of similar age from Preventive Veterinary Medicine
#14
of 14 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,047 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,458 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.