↓ Skip to main content

Impact of a Multiple Mice Holder on Quantitation of High-Throughput MicroPET Imaging With and Without Ct Attenuation Correction

Overview of attention for article published in Molecular Imaging and Biology, March 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

patent
2 patents

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
24 Mendeley
Title
Impact of a Multiple Mice Holder on Quantitation of High-Throughput MicroPET Imaging With and Without Ct Attenuation Correction
Published in
Molecular Imaging and Biology, March 2013
DOI 10.1007/s11307-012-0602-y
Pubmed ID
Authors

Frezghi Habte, Gang Ren, Timothy C. Doyle, Hongguang Liu, Zhen Cheng, David S. Paik

Abstract

The aim of this study is to evaluate the impact of scanning multiple mice simultaneously on image quantitation, relative to single mouse scans on both a micro-positron emission tomography/computed tomography (microPET/CT) scanner (which utilizes CT-based attenuation correction to the PET reconstruction) and a dedicated microPET scanner using an inexpensive mouse holder "hotel." We developed a simple mouse holder made from common laboratory items that allows scanning multiple mice simultaneously. It is also compatible with different imaging modalities to allow multiple mice and multi-modality imaging. For this study, we used a radiotracer ((64)Cu-GB170) with a relatively long half-life (12.7 h), selected to allow scanning at times after tracer uptake reaches steady state. This also reduces the effect of decay between sequential imaging studies, although the standard decay corrections were performed. The imaging was also performed using a common tracer, 2-deoxy-2-[(18) F]fluoro-D-glucose (FDG), although the faster decay and faster pharmacokinetics of FDG may introduce greater biological variations due to differences in injection-to-scan timing. We first scanned cylindrical mouse phantoms (50 ml tubes) both in a groups of four at a time (multiple mice mode) and then individually (single mouse mode), using microPET/CT and microPET scanners to validate the process. Then, we imaged a first set of four mice with subcutaneous tumors (C2C12Ras) in both single- and multiple-mice imaging modes. Later, a second set of four normal mice were injected with FDG and scanned 1 h post-injection. Immediately after completion of the scans, ex vivo biodistribution studies were performed on all animals to provide a "gold-standard" to compare quantitative values obtained from PET. A semi-automatic threshold-based region of interest tool was used to minimize operator variability during image analysis. Phantom studies showed less than 4.5 % relative error difference between the single- and multiple-mice imaging modes of PET imaging with CT-based attenuation correction and 18.4 % without CT-based attenuation correction. In vivo animal studies (n = 4) showed <5 % (for (64)Cu, p > 0.686) and <15 % (for FDG, p > 0.4 except for brain image data p = 0.029) relative mean difference with respect to percent injected dose per gram (%ID/gram) between the single- and multiple-mice microPET imaging mode when CT-based attenuation correction is performed. Without CT-based attenuation correction, we observed relative mean differences of about 11 % for (64)Cu and 15 % for FDG. Our results confirmed the potential use of a microPET/CT scanner for multiple mice simultaneous imaging without significant sacrifice in quantitative accuracy as well as in image quality. Thus, the use of the mouse "hotel" is an aid to increasing instrument throughput on small animal scanners with minimal loss of quantitative accuracy.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 23 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 21%
Student > Ph. D. Student 5 21%
Student > Doctoral Student 3 13%
Other 2 8%
Student > Master 2 8%
Other 2 8%
Unknown 5 21%
Readers by discipline Count As %
Medicine and Dentistry 6 25%
Engineering 3 13%
Agricultural and Biological Sciences 2 8%
Biochemistry, Genetics and Molecular Biology 2 8%
Earth and Planetary Sciences 1 4%
Other 3 13%
Unknown 7 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 May 2015.
All research outputs
#8,534,528
of 25,373,627 outputs
Outputs from Molecular Imaging and Biology
#244
of 837 outputs
Outputs of similar age
#71,445
of 208,477 outputs
Outputs of similar age from Molecular Imaging and Biology
#2
of 7 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 837 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 208,477 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 5 of them.