↓ Skip to main content

Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats

Overview of attention for article published in Molecular and Cellular Biochemistry, February 2012
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
29 Mendeley
Title
Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats
Published in
Molecular and Cellular Biochemistry, February 2012
DOI 10.1007/s11010-012-1264-4
Pubmed ID
Authors

Yong-Sheng Yu, Hao Zheng

Abstract

In hypertensive animals and patients, oxidative stress represents the primary risk factor for progression of left ventricular hypertrophy. Recently, it has been demonstrated that hydrogen, as a novel antioxidant, can selectively reduce hydroxyl radicals and peroxynitrite anion to exert therapeutic antioxidant activity. In the current study, we explored the effect of chronic treatment with hydrogen-rich saline (HRS) on left ventricular hypertrophy in spontaneously hypertensive rats (SHR). The 8-week-old male SHR and age-matched Wistar-Kyoto rats (WKY) were randomized into HRS-treated (6 ml/kg/day for 3 months, i.p.) and vehicle-treated groups. HRS treatment had no significant effect on blood pressure, but it effectively attenuated left ventricular hypertrophy in SHR. HRS treatment abated oxidative stress, restored the activity of antioxidant enzymes including GPx, GST, catalase, and SOD, suppressed NADPH oxidase activity and downregulated Nox2 and Nox4 expression in left ventricles of SHR. HRS treatment suppressed pro-inflammatory cytokines including IL-1β, IL-6, TNF-α, and MCP-1, and inhibited NF-κB activation through preventing IκBα degradation in left ventricles of SHR. HRS treatment preserved mitochondrial function through restoring electron transport chain enzyme activity, repressing ROS formation, and enhancing ATP production in left ventricles of SHR. Moreover, HRS treatment suppressed ACE expression and locally reduced angiotensin II generation in left ventricles of SHR. In conclusion, HRS treatment attenuates left ventricular hypertrophy through abating oxidative stress, suppressing inflammatory process, preserving mitochondrial function, in which suppression of HRS on angiotensin II in left ventricles locally might be involved.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 24%
Researcher 3 10%
Student > Doctoral Student 3 10%
Professor 2 7%
Student > Postgraduate 2 7%
Other 6 21%
Unknown 6 21%
Readers by discipline Count As %
Medicine and Dentistry 8 28%
Agricultural and Biological Sciences 3 10%
Biochemistry, Genetics and Molecular Biology 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Sports and Recreations 1 3%
Other 3 10%
Unknown 10 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 June 2016.
All research outputs
#20,155,513
of 22,663,150 outputs
Outputs from Molecular and Cellular Biochemistry
#1,791
of 2,288 outputs
Outputs of similar age
#141,401
of 155,801 outputs
Outputs of similar age from Molecular and Cellular Biochemistry
#13
of 17 outputs
Altmetric has tracked 22,663,150 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,288 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 155,801 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.