↓ Skip to main content

Mechanism of pancreatic and liver malformations in human fetuses with short‐rib polydactyly syndrome

Overview of attention for article published in Birth Defects Research Part A Clinical and Molecular Teratology, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mechanism of pancreatic and liver malformations in human fetuses with short‐rib polydactyly syndrome
Published in
Birth Defects Research Part A Clinical and Molecular Teratology, March 2016
DOI 10.1002/bdra.23495
Pubmed ID
Authors

Christine K C Loo, Tamara N Pereira, Mette Ramsing, Ida Vogel, Olav B Petersen, Grant A Ramm

Abstract

The short-rib polydactyly (SRP) syndromes are rare skeletal dysplasias caused by abnormalities in primary cilia, sometimes associated with visceral malformations. The pathogenesis of ductal plate malformation (DPM) varies in different syndromes and has not been investigated in SRP. We have studied liver development in five SRP fetuses and pancreatic development in one SRP fetus, with genetically confirmed mutations in cilia related genes, with and without DPMs, using the immunoperoxidase technique, and compared these to other syndromes with DPM. Acetylated tubulin expression was abnormal in DPM in SRP, Meckel syndrome, and autosomal recessive polycystic kidney disease (ARPKD), confirming ciliary anomalies. SDF-1 was abnormally expressed in SRP and two of three cases of autosomal dominant polycystic kidney disease (ADPKD) but not ARPKD or Meckel. Increased density of quiescent hepatic stellate cells was seen in SRP, Meckel, one of three cases of ARPKD, and two of three cases of ADPKD with aberrant hepatocyte expression of keratin 19 in SRP and ADPKD. Immunophenotypic abnormalities were present even in fetal liver without fully developed DPMs. The SRP case with DPM and pancreatic malformations showed abnormalities in the pancreatic head (influenced by mesenchyme from the septum transversum, similar to liver) but not pancreatic body (influenced by mesenchyme adjacent to the notochord). In SRP, there are differentiation defects of hepatocytes, cholangiocytes, and liver mesenchyme and, in rare cases, pancreatic mesenchymal anomalies. The morphological changes were subtle in early gestation but immunophenotypic abnormalities were present. Mesenchymal-epithelial interactions may contribute to the malformations. Birth Defects Research (Part A), 2016. © 2016 Wiley Periodicals, Inc.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 31%
Professor > Associate Professor 2 15%
Other 1 8%
Student > Ph. D. Student 1 8%
Student > Doctoral Student 1 8%
Other 2 15%
Unknown 2 15%
Readers by discipline Count As %
Medicine and Dentistry 7 54%
Biochemistry, Genetics and Molecular Biology 2 15%
Agricultural and Biological Sciences 1 8%
Unknown 3 23%