↓ Skip to main content

Statistical Genomics

Overview of attention for book
Cover of 'Statistical Genomics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Overview of Sequence Data Formats
  3. Altmetric Badge
    Chapter 2 Integrative Exploratory Analysis of Two or More Genomic Datasets
  4. Altmetric Badge
    Chapter 3 Study Design for Sequencing Studies
  5. Altmetric Badge
    Chapter 4 Genomic Annotation Resources in R/Bioconductor
  6. Altmetric Badge
    Chapter 5 The Gene Expression Omnibus Database
  7. Altmetric Badge
    Chapter 6 A Practical Guide to The Cancer Genome Atlas (TCGA)
  8. Altmetric Badge
    Chapter 7 Working with Oligonucleotide Arrays
  9. Altmetric Badge
    Chapter 8 Meta-Analysis in Gene Expression Studies
  10. Altmetric Badge
    Chapter 9 Practical Analysis of Genome Contact Interaction Experiments
  11. Altmetric Badge
    Chapter 10 Quantitative Comparison of Large-Scale DNA Enrichment Sequencing Data
  12. Altmetric Badge
    Chapter 11 Variant Calling From Next Generation Sequence Data
  13. Altmetric Badge
    Chapter 12 Genome-Scale Analysis of Cell-Specific Regulatory Codes Using Nuclear Enzymes
  14. Altmetric Badge
    Chapter 13 NGS-QC Generator: A Quality Control System for ChIP-Seq and Related Deep Sequencing-Generated Datasets
  15. Altmetric Badge
    Chapter 14 Operating on Genomic Ranges Using BEDOPS
  16. Altmetric Badge
    Chapter 15 GMAP and GSNAP for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality
  17. Altmetric Badge
    Chapter 16 Visualizing Genomic Data Using Gviz and Bioconductor
  18. Altmetric Badge
    Chapter 17 Introducing Machine Learning Concepts with WEKA
  19. Altmetric Badge
    Chapter 18 Experimental Design and Power Calculation for RNA-seq Experiments
  20. Altmetric Badge
    Chapter 19 It’s DE-licious: A Recipe for Differential Expression Analyses of RNA-seq Experiments Using Quasi-Likelihood Methods in edgeR
Attention for Chapter 13: NGS-QC Generator: A Quality Control System for ChIP-Seq and Related Deep Sequencing-Generated Datasets
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
14 X users

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
30 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
NGS-QC Generator: A Quality Control System for ChIP-Seq and Related Deep Sequencing-Generated Datasets
Chapter number 13
Book title
Statistical Genomics
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3578-9_13
Pubmed ID
Book ISBNs
978-1-4939-3576-5, 978-1-4939-3578-9
Authors

Marco Antonio Mendoza-Parra, Mohamed-Ashick M. Saleem, Matthias Blum, Pierre-Etienne Cholley, Hinrich Gronemeyer, Mendoza-Parra, Marco Antonio, Saleem, Mohamed-Ashick M, Blum, Matthias, Cholley, Pierre-Etienne, Gronemeyer, Hinrich

Editors

Ewy Mathé, Sean Davis

Abstract

The combination of massive parallel sequencing with a variety of modern DNA/RNA enrichment technologies provides means for interrogating functional protein-genome interactions (ChIP-seq), genome-wide transcriptional activity (RNA-seq; GRO-seq), chromatin accessibility (DNase-seq, FAIRE-seq, MNase-seq), and more recently the three-dimensional organization of chromatin (Hi-C, ChIA-PET). In systems biology-based approaches several of these readouts are generally cumulated with the aim of describing living systems through a reconstitution of the genome-regulatory functions. However, an issue that is often underestimated is that conclusions drawn from such multidimensional analyses of NGS-derived datasets critically depend on the quality of the compared datasets. To address this problem, we have developed the NGS-QC Generator, a quality control system that infers quality descriptors for any kind of ChIP-sequencing and related datasets. In this chapter we provide a detailed protocol for (1) assessing quality descriptors with the NGS-QC Generator; (2) to interpret the generated reports; and (3) to explore the database of QC indicators ( www.ngs-qc.org ) for >21,000 publicly available datasets.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
Canada 1 3%
Unknown 28 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 37%
Student > Ph. D. Student 5 17%
Student > Master 4 13%
Student > Bachelor 2 7%
Other 2 7%
Other 4 13%
Unknown 2 7%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 30%
Biochemistry, Genetics and Molecular Biology 7 23%
Immunology and Microbiology 3 10%
Computer Science 3 10%
Chemical Engineering 1 3%
Other 2 7%
Unknown 5 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 April 2016.
All research outputs
#5,064,439
of 24,514,423 outputs
Outputs from Methods in molecular biology
#1,450
of 13,803 outputs
Outputs of similar age
#82,785
of 403,513 outputs
Outputs of similar age from Methods in molecular biology
#197
of 1,461 outputs
Altmetric has tracked 24,514,423 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,803 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 403,513 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 1,461 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.