↓ Skip to main content

Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children

Overview of attention for article published in Pediatric Radiology, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
35 Mendeley
Title
Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children
Published in
Pediatric Radiology, February 2016
DOI 10.1007/s00247-016-3553-7
Pubmed ID
Authors

Laura Olivieri, Russell Cross, Kendall J. O’Brien, Hui Xue, Peter Kellman, Michael S. Hansen

Abstract

The value of late-gadolinium-enhancement (LGE) imaging in the diagnosis and management of pediatric and congenital heart disease is clear; however current acquisition techniques are susceptible to error and artifacts when performed in children because of children's higher heart rates, higher prevalence of sinus arrhythmia, and inability to breath-hold. Commonly used techniques in pediatric LGE imaging include breath-held segmented FLASH (segFLASH) and steady-state free precession-based (segSSFP) imaging. More recently, single-shot SSFP techniques with respiratory motion-corrected averaging have emerged. This study tested and compared single-shot free-breathing LGE techniques with standard segmented breath-held techniques in children undergoing LGE imaging. Thirty-two consecutive children underwent clinically indicated late-enhancement imaging using intravenous gadobutrol 0.15 mmol/kg. Breath-held segSSFP, breath-held segFLASH, and free-breathing single-shot SSFP LGE sequences were performed in consecutive series in each child. Two blinded reviewers evaluated the quality of the images and rated them on a scale of 1-5 (1 = poor, 5 = superior) based on blood pool-myocardial definition, presence of cardiac motion, presence of respiratory motion artifacts, and image acquisition artifact. We used analysis of variance (ANOVA) to compare groups. Patients ranged in age from 9 months to 18 years, with a mean +/- standard deviation (SD) of 13.3 +/- 4.8 years. R-R interval at the time of acquisition ranged 366-1,265 milliseconds (ms) (47-164 beats per minute [bpm]), mean +/- SD of 843+/-231 ms (72+/-21 bpm). Mean +/- SD quality ratings for long-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.1+/-0.9, 3.4+/-0.9 and 4.0+/-0.9, respectively (P < 0.01 by ANOVA). Mean +/- SD quality ratings for short-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.4+/-1, 3.8+/-0.9 and 4.3+/-0.7, respectively (P < 0.01 by ANOVA). Single-shot late-enhancement imaging with motion-corrected averaging is feasible in children, robust at high heart rates and with variable R-R intervals, and can be performed without breath-holding with higher image quality ratings than standard breath-held techniques. Use of free-breathing single-shot motion-corrected technique does not compromise LGE image quality in children who can hold their breath, and it can significantly improve image quality in children who cannot hold their breath or who have significant arrhythmia.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 23%
Other 5 14%
Student > Doctoral Student 2 6%
Student > Ph. D. Student 2 6%
Student > Postgraduate 2 6%
Other 5 14%
Unknown 11 31%
Readers by discipline Count As %
Medicine and Dentistry 16 46%
Engineering 3 9%
Agricultural and Biological Sciences 1 3%
Computer Science 1 3%
Unknown 14 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2016.
All research outputs
#18,449,393
of 22,858,915 outputs
Outputs from Pediatric Radiology
#1,547
of 2,086 outputs
Outputs of similar age
#216,433
of 297,957 outputs
Outputs of similar age from Pediatric Radiology
#24
of 39 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,086 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 297,957 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.