↓ Skip to main content

Pathways to Earth-Like Atmospheres

Overview of attention for article published in Origins of Life and Evolution of Biospheres, February 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
20 Mendeley
Title
Pathways to Earth-Like Atmospheres
Published in
Origins of Life and Evolution of Biospheres, February 2012
DOI 10.1007/s11084-012-9264-7
Pubmed ID
Authors

Helmut Lammer, K. G. Kislyakova, P. Odert, M. Leitzinger, R. Schwarz, E. Pilat-Lohinger, Yu. N. Kulikov, M. L. Khodachenko, M. Güdel, A. Hanslmeier

Abstract

We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 25%
Researcher 3 15%
Student > Postgraduate 3 15%
Student > Master 2 10%
Professor > Associate Professor 2 10%
Other 1 5%
Unknown 4 20%
Readers by discipline Count As %
Physics and Astronomy 7 35%
Earth and Planetary Sciences 3 15%
Environmental Science 1 5%
Energy 1 5%
Chemistry 1 5%
Other 1 5%
Unknown 6 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 March 2012.
All research outputs
#14,546,919
of 23,906,448 outputs
Outputs from Origins of Life and Evolution of Biospheres
#290
of 476 outputs
Outputs of similar age
#156,315
of 253,745 outputs
Outputs of similar age from Origins of Life and Evolution of Biospheres
#4
of 7 outputs
Altmetric has tracked 23,906,448 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 476 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 253,745 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.