↓ Skip to main content

Advantages and limitations of chemical extraction tests to predict mercury soil-plant transfer in soil risk evaluations

Overview of attention for article published in Environmental Science and Pollution Research, April 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
20 Mendeley
Title
Advantages and limitations of chemical extraction tests to predict mercury soil-plant transfer in soil risk evaluations
Published in
Environmental Science and Pollution Research, April 2016
DOI 10.1007/s11356-016-6564-x
Pubmed ID
Authors

R. J. R. Monteiro, S. M. Rodrigues, N. Cruz, B. Henriques, A. C. Duarte, P. F. A. M. Römkens, E. Pereira

Abstract

In this study, we compared the size of the mobile Hg pool in soil to those obtained by extractions using 2 M HNO3, 5 M HNO3, and 2 M HCl. This was done to evaluate their suitability to be used as proxies in view of Hg uptake by ryegrass. Total levels of Hg in soil ranged from 0.66 to 70 mg kg(-1) (median 17 mg kg(-1)), and concentrations of Hg extracted increased in the order: mobile Hg < 2 M HNO3 < 5 M HNO3 < 2 M HCl. The percentage of Hg extracted relative to total Hg in soil varied from 0.13 to 0.79 % (for the mobile pool) to 4.8-82 % (for 2 M HCl). Levels of Hg in ryegrass ranged from 0.060 to 36 mg kg(-1) (median 0.65 mg kg(-1), in roots) and from 0.040 to 5.4 mg kg(-1) (median 0.34 mg kg(-1), in shoots). Although results from the 2 M HNO3 extraction appeared to the most comparable to the actual total Hg levels measured in plants, the 2 M HCl extraction better expressed the variation in plant pools. In general, soil tests explained between 66 and 86 % of the variability of Hg contents in ryegrass shoots. Results indicated that all methods tested here can be used to estimate the plant total Hg pool at contaminated areas and can be used in first tier soil risk evaluations. This study also indicates that a relevant part of Hg in plants is from deposition of soil particles and that splashing of soil can be more significant for plant contamination than actual uptake processes. Graphical Abstract Illustration of potential mercury soil-plant transfer routes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 20%
Other 3 15%
Student > Ph. D. Student 3 15%
Student > Master 3 15%
Professor 1 5%
Other 1 5%
Unknown 5 25%
Readers by discipline Count As %
Environmental Science 5 25%
Agricultural and Biological Sciences 3 15%
Chemistry 2 10%
Immunology and Microbiology 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Other 2 10%
Unknown 6 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 April 2016.
All research outputs
#21,420,714
of 23,911,072 outputs
Outputs from Environmental Science and Pollution Research
#7,000
of 9,883 outputs
Outputs of similar age
#262,281
of 304,332 outputs
Outputs of similar age from Environmental Science and Pollution Research
#133
of 185 outputs
Altmetric has tracked 23,911,072 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,883 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 304,332 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 185 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.