↓ Skip to main content

Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer

Overview of attention for article published in Angiogenesis, April 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
107 Dimensions

Readers on

mendeley
107 Mendeley
Title
Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer
Published in
Angiogenesis, April 2015
DOI 10.1007/s10456-015-9462-9
Pubmed ID
Authors

Andrea Weiss, Xianting Ding, Judy R. van Beijnum, Ieong Wong, Tse J. Wong, Robert H. Berndsen, Olivier Dormond, Marchien Dallinga, Li Shen, Reinier O. Schlingemann, Roberto Pili, Chih-Ming Ho, Paul J. Dyson, Hubert van den Bergh, Arjan W. Griffioen, Patrycja Nowak-Sliwinska

Abstract

Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 107 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 107 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 19%
Student > Master 20 19%
Student > Bachelor 17 16%
Researcher 14 13%
Professor > Associate Professor 7 7%
Other 15 14%
Unknown 14 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 15%
Agricultural and Biological Sciences 14 13%
Medicine and Dentistry 14 13%
Pharmacology, Toxicology and Pharmaceutical Science 13 12%
Chemistry 13 12%
Other 21 20%
Unknown 16 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 April 2016.
All research outputs
#20,318,358
of 22,860,626 outputs
Outputs from Angiogenesis
#439
of 536 outputs
Outputs of similar age
#224,068
of 264,665 outputs
Outputs of similar age from Angiogenesis
#2
of 5 outputs
Altmetric has tracked 22,860,626 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 536 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,665 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.