↓ Skip to main content

A broad-standard technique for correcting for band broadening in size-exclusion chromatography

Overview of attention for article published in Journal of Chromatography A, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A broad-standard technique for correcting for band broadening in size-exclusion chromatography
Published in
Journal of Chromatography A, March 2016
DOI 10.1016/j.chroma.2016.03.030
Pubmed ID
Authors

Peng Zhang, Paul Mazoyer, Robert G. Gilbert

Abstract

Band broadening in size-exclusion chromatography (SEC) is always present to some extent. Broadening effects on averages such as the weight- and number average molecular weights (MW¯ and Mn¯ respectively) are minimal with modern SEC systems. However, broadening distorts the shape of the true molecular weight distribution (MWD), which causes problems if one wants to compare the detailed form of the MWD to a model. An addition to current methods for overcoming this problem is presented. One starts with a sufficiently wide range of samples whose exact values of Mn¯ andMW¯ have been measured by non-SEC methods (e.g. by fluorimetry and light scattering, respectively, of the sample without size separation). A true (unbroadened) molecular weight distribution for a sample can be obtained by deconvolution (here using a maximum-entropy algorithm) by fitting SEC data for these samples to these exact Mn¯ and MW¯ values to find the values of the parameters in a sufficiently flexible assumed broadening function. This was modelled using simulated band broadening and subsequent deconvolution, with the broadening parameters least-squares fitted to the "exact" sets of values of Mn¯ and MW¯. The results show that if these Mn¯ and MW¯ values are for a series of broad (not narrow) standards covering a sufficient range of molecular weight, then after deconvolution, a good representation of the original molecular weight distribution used in the simulation is obtained. The method should prove useful for water-soluble polymers, for which it is often difficult to obtain narrow standards of a wide range of molecular weight, as required in a number of well-established methods for correcting for band broadening.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 31%
Other 2 13%
Student > Doctoral Student 1 6%
Student > Bachelor 1 6%
Student > Master 1 6%
Other 3 19%
Unknown 3 19%
Readers by discipline Count As %
Chemistry 6 38%
Chemical Engineering 1 6%
Mathematics 1 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Linguistics 1 6%
Other 1 6%
Unknown 5 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 April 2016.
All research outputs
#20,656,820
of 25,374,647 outputs
Outputs from Journal of Chromatography A
#9,537
of 11,800 outputs
Outputs of similar age
#245,103
of 329,938 outputs
Outputs of similar age from Journal of Chromatography A
#40
of 64 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,800 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,938 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.