↓ Skip to main content

Downregulation of 14-3-3 Proteins in Alzheimer’s Disease

Overview of attention for article published in Molecular Neurobiology, September 2019
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
56 Mendeley
Title
Downregulation of 14-3-3 Proteins in Alzheimer’s Disease
Published in
Molecular Neurobiology, September 2019
DOI 10.1007/s12035-019-01754-y
Pubmed ID
Authors

Qiang Gu, Elvis Cuevas, James Raymick, Jyotshna Kanungo, Sumit Sarkar

Abstract

One of the most abundant proteins expressed in the brain, 14-3-3 comprises about 1% of the brain's total soluble proteins. The 14-3-3 isoforms bind to specific phosphoserine- and phosphothreonine-containing motifs found on a variety of signaling proteins (kinases and transcription factors, among others) to regulate a wide array of cellular processes including cell cycling, apoptosis, and autophagy. Previously, we described the expression of different 14-3-3 isoforms in the rat frontal cortex and reported their downregulation in a rodent model of neurodegeneration. To further investigate possible roles of 14-3-3 proteins in neurodegeneration, the present study examined different 14-3-3 isoforms in the frontal cortex of postmortem Alzheimer's disease (AD) patients and control subjects. Among the different 14-3-3 isoforms in the human frontal cortex, the relative abundance of expression is in the following order: 14-3-3-eta > tau > sigma > gamma > epsilon > zeta/delta > beta/alpha. These relative abundance levels of different 14-3-3 isoforms in human frontal cortex closely resemble those in rat frontal cortex, suggesting a conserved expression pattern of different 14-3-3 isoforms in mammalian species. In the AD samples, there was a significant decrease in total 14-3-3 levels and the 14-3-3-eta and 14-3-3-gamma isoforms, while no significant difference in the expression level of other 14-3-3 isoforms between AD and control brains was detected. Together, these results demonstrate an abundance of several 14-3-3 isoforms in the frontal cortex and that a downregulation of total 14-3-3 protein levels and specific 14-3-3 isoforms is associated with neurodegeneration. Given the known function of 14-3-3 proteins as inhibitors of apoptosis, the present results suggest that 14-3-3 proteins may play an important role in neurodegeneration and deserve further investigations into AD and other neurodegenerative disorders.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 16%
Student > Master 8 14%
Researcher 6 11%
Student > Bachelor 5 9%
Student > Doctoral Student 4 7%
Other 9 16%
Unknown 15 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 18%
Agricultural and Biological Sciences 10 18%
Neuroscience 8 14%
Chemistry 4 7%
Engineering 2 4%
Other 6 11%
Unknown 16 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 April 2020.
All research outputs
#2,810,539
of 23,155,957 outputs
Outputs from Molecular Neurobiology
#384
of 3,504 outputs
Outputs of similar age
#58,850
of 340,674 outputs
Outputs of similar age from Molecular Neurobiology
#6
of 50 outputs
Altmetric has tracked 23,155,957 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,504 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,674 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.