↓ Skip to main content

An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue

Overview of attention for article published in BMC Research Notes, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
95 Dimensions

Readers on

mendeley
570 Mendeley
Title
An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue
Published in
BMC Research Notes, April 2016
DOI 10.1186/s13104-016-1902-0
Pubmed ID
Authors

Sandra C. Becerra, Daniel C. Roy, Carlos J. Sanchez, Robert J. Christy, David M. Burmeister

Abstract

Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Currently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate treatments for bacterial infections. Histologically, hematoxylin and eosin (H&E) and Gram stains have been employed, but are far from optimal when analyzing tissue samples due to non-specific staining. The goal of the current study was to develop a modification of the Gram stain that enhances the contrast between bacteria and host tissue. A modified Gram stain was developed and tested as an alternative to Gram stain that improves the contrast between Gram positive bacteria, Gram negative bacteria and host tissue. Initially, clinically relevant strains of Pseudomonas aeruginosa and Staphylococcus aureus were visualized in vitro and in biopsies of infected, porcine burns using routine Gram stain, and immunohistochemistry techniques involving bacterial strain-specific fluorescent antibodies as validation tools. H&E and Gram stain of serial biopsy sections were then compared to a modification of the Gram stain incorporating a counterstain that highlights collagen found in tissue. The modified Gram stain clearly identified both Gram positive and Gram negative bacteria, and when compared to H&E or Gram stain alone provided excellent contrast between bacteria and non-viable burn eschar. Moreover, when applied to surgical biopsies from patients that underwent burn debridement this technique was able to clearly detect bacterial morphology within host tissue. We describe a modification of the Gram stain that provides improved contrast of Gram positive and Gram negative microorganisms within host tissue. The samples used in this study demonstrate that this staining technique has laboratory and clinical applicability. This modification only adds minutes to traditional Gram stain with reusable reagents, and results in a cost- and time-efficient technique for identifying bacteria in any clinical biopsy containing connective tissue.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 570 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 <1%
United States 1 <1%
Unknown 568 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 128 22%
Student > Master 52 9%
Student > Ph. D. Student 36 6%
Researcher 31 5%
Lecturer 19 3%
Other 64 11%
Unknown 240 42%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 81 14%
Medicine and Dentistry 58 10%
Agricultural and Biological Sciences 41 7%
Immunology and Microbiology 37 6%
Engineering 18 3%
Other 75 13%
Unknown 260 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 October 2020.
All research outputs
#15,368,104
of 22,862,742 outputs
Outputs from BMC Research Notes
#2,315
of 4,267 outputs
Outputs of similar age
#180,571
of 300,876 outputs
Outputs of similar age from BMC Research Notes
#61
of 103 outputs
Altmetric has tracked 22,862,742 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,267 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,876 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 103 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.