↓ Skip to main content

Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene

Overview of attention for article published in Human Genetics, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene
Published in
Human Genetics, September 2015
DOI 10.1007/s00439-015-1594-x
Pubmed ID
Authors

Minaka Ishibashi, Elizabeth Manning, Cheryl Shoubridge, Monika Krecsmarik, Thomas A. Hawkins, Jean Giacomotto, Ting Zhao, Thomas Mueller, Patricia I. Bader, Sau W. Cheung, Pawel Stankiewicz, Nicole L. Bain, Anna Hackett, Chilamakuri C. S. Reddy, Alejandro S. Mechaly, Bernard Peers, Stephen W. Wilson, Boris Lenhard, Laure Bally-Cuif, Jozef Gecz, Thomas S. Becker, Silke Rinkwitz

Abstract

Protein-coding mutations in the transcription factor-encoding gene ARX cause various forms of intellectual disability (ID) and epilepsy. In contrast, variations in surrounding non-coding sequences are correlated with milder forms of non-syndromic ID and autism and had suggested the importance of ARX gene regulation in the etiology of these disorders. We compile data on several novel and some already identified patients with or without ID that carry duplications of ARX genomic region and consider likely genetic mechanisms underlying the neurodevelopmental defects. We establish the long-range regulatory domain of ARX and identify its brain region-specific autoregulation. We conclude that neurodevelopmental disturbances in the patients may not simply arise from increased dosage due to ARX duplication. This is further exemplified by a small duplication involving a non-functional ARX copy, but with duplicated enhancers. ARX enhancers are located within a 504-kb region and regulate expression specifically in the forebrain in developing and adult zebrafish. Transgenic enhancer-reporter lines were used as in vivo tools to delineate a brain region-specific negative and positive autoregulation of ARX. We find autorepression of ARX in the telencephalon and autoactivation in the ventral thalamus. Fluorescently labeled brain regions in the transgenic lines facilitated the identification of neuronal outgrowth and pathfinding disturbances in the ventral thalamus and telencephalon that occur when arxa dosage is diminished. In summary, we have established a model for how breakpoints in long-range gene regulation alter the expression levels of a target gene brain region-specifically, and how this can cause subtle neuronal phenotypes relating to the etiology of associated neuropsychiatric disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 23%
Student > Ph. D. Student 9 15%
Student > Master 8 13%
Student > Bachelor 6 10%
Unspecified 4 7%
Other 10 17%
Unknown 9 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 22%
Medicine and Dentistry 7 12%
Agricultural and Biological Sciences 6 10%
Psychology 5 8%
Unspecified 4 7%
Other 12 20%
Unknown 13 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2016.
All research outputs
#13,749,545
of 23,310,485 outputs
Outputs from Human Genetics
#2,410
of 2,980 outputs
Outputs of similar age
#127,652
of 268,048 outputs
Outputs of similar age from Human Genetics
#9
of 18 outputs
Altmetric has tracked 23,310,485 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,980 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,048 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.