↓ Skip to main content

Global genetic diversity of the Plasmodium vivax transmission-blocking vaccine candidate Pvs48/45

Overview of attention for article published in Malaria Journal, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
46 Mendeley
Title
Global genetic diversity of the Plasmodium vivax transmission-blocking vaccine candidate Pvs48/45
Published in
Malaria Journal, April 2016
DOI 10.1186/s12936-016-1263-0
Pubmed ID
Authors

Andres F. Vallejo, Nora L. Martinez, Alejandra Tobon, Jackeline Alger, Marcus V. Lacerda, Andrey V. Kajava, Myriam Arévalo-Herrera, Sócrates Herrera

Abstract

Plasmodium vivax 48/45 protein is expressed on the surface of gametocytes/gametes and plays a key role in gamete fusion during fertilization. This protein was recently expressed in Escherichia coli host as a recombinant product that was highly immunogenic in mice and monkeys and induced antibodies with high transmission-blocking activity, suggesting its potential as a P. vivax transmission-blocking vaccine candidate. To determine sequence polymorphism of natural parasite isolates and its potential influence on the protein structure, all pvs48/45 sequences reported in databases from around the world as well as those from low-transmission settings of Latin America were compared. Plasmodium vivax parasite isolates from malaria-endemic regions of Colombia, Brazil and Honduras (n = 60) were used to sequence the Pvs48/45 gene, and compared to those previously reported to GenBank and PlasmoDB (n = 222). Pvs48/45 gene haplotypes were analysed to determine the functional significance of genetic variation in protein structure and vaccine potential. Nine non-synonymous substitutions (E35K, Y196H, H211N, K250N, D335Y, E353Q, A376T, K390T, K418R) and three synonymous substitutions (I73, T149, C156) that define seven different haplotypes were found among the 282 isolates from nine countries when compared with the Sal I reference sequence. Nucleotide diversity (π) was 0.00173 for worldwide samples (range 0.00033-0.00216), resulting in relatively high diversity in Myanmar and Colombia, and low diversity in Mexico, Peru and South Korea. The two most frequent substitutions (E353Q: 41.9 %, K250N: 39.5 %) were predicted to be located in antigenic regions without affecting putative B cell epitopes or the tertiary protein structure. There is limited sequence polymorphism in pvs48/45 with noted geographical clustering among Asian and American isolates. The low genetic diversity of the protein does not influence the predicted antigenicity or protein structure and, therefore, supports its further development as transmission-blocking vaccine candidate.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 24%
Researcher 11 24%
Student > Ph. D. Student 5 11%
Professor 3 7%
Student > Bachelor 3 7%
Other 4 9%
Unknown 9 20%
Readers by discipline Count As %
Medicine and Dentistry 11 24%
Biochemistry, Genetics and Molecular Biology 8 17%
Agricultural and Biological Sciences 4 9%
Immunology and Microbiology 3 7%
Chemistry 2 4%
Other 6 13%
Unknown 12 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2016.
All research outputs
#15,368,104
of 22,862,742 outputs
Outputs from Malaria Journal
#4,483
of 5,573 outputs
Outputs of similar age
#180,571
of 300,876 outputs
Outputs of similar age from Malaria Journal
#146
of 175 outputs
Altmetric has tracked 22,862,742 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,573 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,876 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 175 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.