↓ Skip to main content

BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells

Overview of attention for article published in Cell and Tissue Research, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
159 Dimensions

Readers on

mendeley
125 Mendeley
Title
BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells
Published in
Cell and Tissue Research, April 2016
DOI 10.1007/s00441-016-2403-0
Pubmed ID
Authors

Nian Zhou, Qi Li, Xin Lin, Ning Hu, Jun-Yi Liao, Liang-Bo Lin, Chen Zhao, Zhen-Ming Hu, Xi Liang, Wei Xu, Hong Chen, Wei Huang

Abstract

Bone morphogenetic protein 2 (BMP2), a member of the transforming growth factor-β (TGF-β) super-family, is one of the main chondrogenic growth factors involved in cartilage regeneration. BMP2 is known to induce chondrogenic differentiation in various types of stem cells in vitro. However, BMP2 also induces osteogenic differentiation and endochondral ossification in mesenchymal stem cells (MSCs). Although information regarding BMP2-induced chondrogenic and osteogenic differentiation within the same system might be essential for cartilage tissue engineering, few studies concerning these issues have been conducted. In this study, BMP2 was identified as a regulator of chondrogenic differentiation, osteogenic differentiation and endochondral bone formation within the same system. BMP2 was used to regulate chondrogenic and osteogenic differentiation in stem cells within the same culture system in vitro and in vivo. Any changes in the differentiation markers were assessed. BMP2 was found to induce chondrogenesis and osteogenesis in vitro via the expression of Sox9, Runx2 and its downstream markers. According to the results of the subcutaneous stem cell implantation studies, BMP2 not only induced cartilage formation but also promoted endochondral ossification during ectopic bone/cartilage formation. In fetal limb cultures, BMP2 promoted chondrocyte hypertrophy and endochondral ossification. Our data reveal that BMP2 can spontaneously induce chondrogenic differentiation, osteogenic differentiation and endochondral bone formation within the same system. Thus, BMP2 can be used in cartilage tissue engineering to regulate cartilage formation but has to be properly regulated for cartilage tissue engineering in order to retain the cartilage phenotype.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 125 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Germany 1 <1%
Unknown 123 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 28 22%
Student > Master 21 17%
Student > Doctoral Student 11 9%
Researcher 10 8%
Student > Bachelor 7 6%
Other 11 9%
Unknown 37 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 31 25%
Medicine and Dentistry 18 14%
Agricultural and Biological Sciences 15 12%
Engineering 9 7%
Materials Science 3 2%
Other 11 9%
Unknown 38 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 December 2018.
All research outputs
#14,900,673
of 23,839,820 outputs
Outputs from Cell and Tissue Research
#1,367
of 2,279 outputs
Outputs of similar age
#162,723
of 301,255 outputs
Outputs of similar age from Cell and Tissue Research
#3
of 31 outputs
Altmetric has tracked 23,839,820 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,279 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 301,255 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.