↓ Skip to main content

Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma

Overview of attention for article published in Genes, Chromosomes, and Cancer, April 2012
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

twitter
1 X user
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
140 Dimensions

Readers on

mendeley
41 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma
Published in
Genes, Chromosomes, and Cancer, April 2012
DOI 10.1002/gcc.21965
Pubmed ID
Authors

Marta Persson, Ywonne Andrén, Christopher A. Moskaluk, Henry F. Frierson, Susanna L. Cooke, Philip Andrew Futreal, Teresia Kling, Sven Nelander, Anders Nordkvist, Fredrik Persson, Göran Stenman

Abstract

Adenoid cystic carcinoma (ACC) of the head and neck is a malignant tumor with poor long-term prognosis. Besides the recently identified MYB-NFIB fusion oncogene generated by a t(6;9) translocation, little is known about other genetic alterations in ACC. Using high-resolution, array-based comparative genomic hybridization, and massively paired-end sequencing, we explored genomic alterations in 40 frozen ACCs. Eighty-six percent of the tumors expressed MYB-NFIB fusion transcripts and 97% overexpressed MYB mRNA, indicating that MYB activation is a hallmark of ACC. Thirty-five recurrent copy number alterations (CNAs) were detected, including losses involving 12q, 6q, 9p, 11q, 14q, 1p, and 5q and gains involving 1q, 9p, and 22q. Grade III tumors had on average a significantly higher number of CNAs/tumor compared to Grade I and II tumors (P = 0.007). Losses of 1p, 6q, and 15q were associated with high-grade tumors, whereas losses of 14q were exclusively seen in Grade I tumors. The t(6;9) rearrangements were associated with a complex pattern of breakpoints, deletions, insertions, inversions, and for 9p also gains. Analyses of fusion-negative ACCs using high-resolution arrays and massively paired-end sequencing revealed that MYB may also be deregulated by other mechanisms in addition to gene fusion. Our studies also identified several down-regulated candidate tumor suppressor genes (CTNNBIP1, CASP9, PRDM2, and SFN) in 1p36.33-p35.3 that may be of clinical significance in high-grade tumors. Further, studies of these and other potential target genes may lead to the identification of novel driver genes in ACC.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 2%
Unknown 40 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 17%
Researcher 7 17%
Student > Bachelor 5 12%
Professor 3 7%
Other 2 5%
Other 5 12%
Unknown 12 29%
Readers by discipline Count As %
Medicine and Dentistry 16 39%
Agricultural and Biological Sciences 8 20%
Chemistry 2 5%
Biochemistry, Genetics and Molecular Biology 1 2%
Psychology 1 2%
Other 1 2%
Unknown 12 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 April 2021.
All research outputs
#7,968,106
of 25,394,764 outputs
Outputs from Genes, Chromosomes, and Cancer
#408
of 1,542 outputs
Outputs of similar age
#48,629
of 160,229 outputs
Outputs of similar age from Genes, Chromosomes, and Cancer
#4
of 18 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 1,542 research outputs from this source. They receive a mean Attention Score of 4.1. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 160,229 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.