↓ Skip to main content

The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes

Overview of attention for article published in Cellular and Molecular Life Sciences, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
81 Mendeley
Title
The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes
Published in
Cellular and Molecular Life Sciences, April 2016
DOI 10.1007/s00018-016-2233-y
Pubmed ID
Authors

Anikó Osteikoetxea-Molnár, Edina Szabó-Meleg, Eszter Angéla Tóth, Ádám Oszvald, Emese Izsépi, Mariann Kremlitzka, Beáta Biri, László Nyitray, Tamás Bozó, Péter Németh, Miklós Kellermayer, Miklós Nyitrai, Janos Matko

Abstract

Tunneling nanotubes (TNTs) are long intercellular connecting structures providing a special transport route between two neighboring cells. To date TNTs have been reported in different cell types including immune cells such as T-, NK, dendritic cells, or macrophages. Here we report that mature, but not immature, B cells spontaneously form extensive TNT networks under conditions resembling the physiological environment. Live-cell fluorescence, structured illumination, and atomic force microscopic imaging provide new insights into the structure and dynamics of B cell TNTs. Importantly, the selective interaction of cell surface integrins with fibronectin or laminin extracellular matrix proteins proved to be essential for initiating TNT growth in B cells. These TNTs display diversity in length and thickness and contain not only F-actin, but their majority also contain microtubules, which were found, however, not essential for TNT formation. Furthermore, we demonstrate that Ca(2+)-dependent cortical actin dynamics exert a fundamental control over TNT growth-retraction equilibrium, suggesting that actin filaments form the TNT skeleton. Non-muscle myosin 2 motor activity was shown to provide a negative control limiting the uncontrolled outgrowth of membranous protrusions. Moreover, we also show that spontaneous growth of TNTs is either reduced or increased by B cell receptor- or LPS-mediated activation signals, respectively, thus supporting the critical role of cytoplasmic Ca(2+) in regulation of TNT formation. Finally, we observed transport of various GM1/GM3 (+) vesicles, lysosomes, and mitochondria inside TNTs, as well as intercellular exchange of MHC-II and B7-2 (CD86) molecules which may represent novel pathways of intercellular communication and immunoregulation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 81 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 81 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 28 35%
Researcher 6 7%
Student > Master 4 5%
Student > Doctoral Student 4 5%
Student > Bachelor 4 5%
Other 13 16%
Unknown 22 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 22 27%
Agricultural and Biological Sciences 15 19%
Medicine and Dentistry 4 5%
Immunology and Microbiology 3 4%
Unspecified 2 2%
Other 10 12%
Unknown 25 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 May 2016.
All research outputs
#14,582,479
of 23,794,258 outputs
Outputs from Cellular and Molecular Life Sciences
#2,793
of 4,151 outputs
Outputs of similar age
#157,431
of 300,844 outputs
Outputs of similar age from Cellular and Molecular Life Sciences
#55
of 90 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,151 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,844 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 90 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.