↓ Skip to main content

Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, April 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
59 Mendeley
Title
Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing
Published in
Biotechnology for Biofuels and Bioproducts, April 2016
DOI 10.1186/s13068-016-0511-4
Pubmed ID
Authors

Da Wang, Fu-Li Li, Shi-An Wang

Abstract

The yeast Saccharomyces cerevisiae is an important eukaryotic workhorse in traditional and modern biotechnology. At present, only a few S. cerevisiae strains have been extensively used as engineering hosts. Recently, an astonishing genotypic and phenotypic diversity of S. cerevisiae was disclosed in natural populations. We suppose that some natural strains can be recruited as superior host candidates in bioengineering. This study engineered a natural S. cerevisiae strain with advantages in inulin utilization to produce ethanol from inulin resources by consolidated bioprocess. Rational engineering strategies were employed, including secretive co-expression of heterologous exo- and endo-inulinases, repression of a protease, and switch between haploid and diploid strains. Results from co-expressing endo- and exo-inulinase genes showed that the extracellular inulinase activity increased 20 to 30-fold in engineered S. cerevisiae strains. Repression of the protease PEP4 influenced cell physiology in late stationary phase. Comparison between haploid and diploid engineered strains indicated that diploid strains were superior to haploid strains in ethanol production albeit not in production and secretion of inulinases. Ethanol fermentation from both inulin and Jerusalem artichoke tuber powder was dramatically improved in most engineered strains. Ethanol yield achieved in the ultimate diploid strain JZD-InuMKCP was close to the theoretical maximum. Productivity achieved in the strain JZD-InuMKCP reached to 2.44 and 3.13 g/L/h in fermentation from 200 g/L inulin and 250 g/L raw Jerusalem artichoke tuber powder, respectively. To our knowledge, these are the highest productivities reported up to now in ethanol fermentation from inulin resources. Although model S. cerevisiae strains are preferentially used as hosts in bioengineering, some natural strains do have specific excellent properties. This study successfully engineered a natural S. cerevisiae strain for efficient ethanol production from inulin resources by consolidated bioprocess, which indicated the feasibility of natural strains used as bioengineering hosts. This study also presented different properties in enzyme secretion and ethanol fermentation between haploid and diploid engineering strains. These findings provided guidelines for host selection in bioengineering.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 2%
Thailand 1 2%
South Africa 1 2%
Unknown 56 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 20%
Researcher 10 17%
Student > Bachelor 9 15%
Student > Master 8 14%
Student > Postgraduate 5 8%
Other 9 15%
Unknown 6 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 32%
Biochemistry, Genetics and Molecular Biology 16 27%
Chemical Engineering 4 7%
Engineering 4 7%
Environmental Science 2 3%
Other 6 10%
Unknown 8 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 July 2016.
All research outputs
#3,415,054
of 25,373,627 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#172
of 1,578 outputs
Outputs of similar age
#52,305
of 312,190 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#6
of 34 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,190 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.