↓ Skip to main content

The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma

Overview of attention for article published in Nature, April 2012
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Citations

dimensions_citation
289 Dimensions

Readers on

mendeley
301 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma
Published in
Nature, April 2012
DOI 10.1038/nature11114
Pubmed ID
Authors

Andrew V. Biankin, Amber L. Johns, Amanda Mawson, David K. Chang, Mary-Anne L. Brancato, Sarah J. Rowe, Skye L. Simpson, Mona Martyn-Smith, Lorraine A. Chantrill, Venessa T. Chin, Angela Chou, Mark J. Cowley, Jeremy L. Humphris, Marc D. Jones, R. Scott Mead, Adnan M. Nagrial, Marina Pajic, Jessica Pettit, Mark Pinese, Ilse Rooman, Jianmin Wu, Roger J. Daly, Elizabeth A. Musgrove, Robert L. Sutherland, Christopher J. Scarlett, Warren Kaplan, Sean M. Grimmond, Nicola Waddell, Karin S. Kassahn, David K. Miller, Peter J. Wilson, Ann-Marie Patch, Sarah Song, Ivon Harliwong, Senel Idrisoglu, Craig Nourse, Ehsan Nourbakhsh, Suzanne Manning, Shivangi Wani, Milena Gongora, Matthew Anderson, Oliver Holmes, Conrad Leonard, Darrin Taylor, Scott Wood, Christina Xu, Katia Nones, J. Lynn Fink, Angelika Christ, Tim Bruxner, Nicole Cloonan, Felicity Newell, John V. Pearson, Jaswinder S. Samra, Anthony J. Gill, Nick Pavlakis, Alex Guminski, Christopher Toon, Andrew V. Blankin, Ray Asghari, Neil D. Merrett, David K. Chang, Darren A. Pavey, Amitabha Das, Peter H. Cosman, Kasim Ismail, Chelsie O’Connor, Vincent W. Lam, Duncan McLeod, Henry C. Pleass, Virginia James, James G. Kench, Caroline L. Cooper, David Joseph, Charbel Sandroussi, Michael Crawford, Michael Texler, Cindy Forrest, Andrew Laycock, Krishna P. Epari, Mo Ballal, David R. Fletcher, Sanjay Mukhedkar, Nigel A. Spry, Bastiaan DeBoer, Ming Chai, Kynan Feeney, Nikolajs Zeps, Maria Beilin, Nam Q. Nguyen, Andrew R. Ruszkiewicz, Chris Worthley, Chuan P. Tan, Tamara Debrencini, John Chen, Mark E. Brooke-Smith, Virginia Papangelis, Henry Tang, Andrew P. Barbour, Andrew D. Clouston, Patrick Martin, Thomas J. O’Rourke, Amy Chiang, Jonathan W. Fawcett, Kellee Slater, Shinn Yeung, Michael Hatzifotis, Peter Hodgkinson, Christopher Christophi, Mehrdad Nikfarjam, Victorian Cancer Biobank, James R. Eshleman, Ralph H. Hruban, Anirban Maitra, Christine A. Iacobuzio-Donahue, Richard D. Schulick, Christopher L. Wolfgang, Richard A. Morgan, Rita T. Lawlor, Stefania Beghelli, Vincenzo Corbo, Maria Scardoni, Claudio Bassi, Aldo Scarpa, Margaret A. Tempero

Abstract

Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression. Our screen revealed new candidate genes for PDA and confirmed the importance of many genes and pathways previously implicated in human PDA. The most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumours. Although previous work had attributed a pro-survival role to USP9X in human neoplasia, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and messenger RNA expression in PDA correlates with poor survival after surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2'-deoxycytidine elevates USP9X expression in human PDA cell lines, indicating a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with Kras(G12D) to accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. We propose that USP9X is a major tumour suppressor gene with prognostic and therapeutic relevance in PDA.

X Demographics

X Demographics

The data shown below were collected from the profiles of 39 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 301 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 6 2%
France 4 1%
United Kingdom 2 <1%
Canada 2 <1%
Japan 2 <1%
Australia 1 <1%
China 1 <1%
Italy 1 <1%
Greece 1 <1%
Other 1 <1%
Unknown 280 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 83 28%
Student > Ph. D. Student 73 24%
Professor 19 6%
Professor > Associate Professor 18 6%
Student > Bachelor 17 6%
Other 49 16%
Unknown 42 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 115 38%
Biochemistry, Genetics and Molecular Biology 71 24%
Medicine and Dentistry 45 15%
Computer Science 4 1%
Chemistry 4 1%
Other 17 6%
Unknown 45 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 56. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 December 2023.
All research outputs
#718,949
of 24,525,936 outputs
Outputs from Nature
#27,009
of 95,293 outputs
Outputs of similar age
#3,489
of 167,050 outputs
Outputs of similar age from Nature
#341
of 994 outputs
Altmetric has tracked 24,525,936 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 95,293 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 101.8. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 167,050 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 994 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.