↓ Skip to main content

The influence of rowing-related postures upon respiratory muscle pressure and flow generating capacity

Overview of attention for article published in European Journal of Applied Physiology, April 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
37 Mendeley
Title
The influence of rowing-related postures upon respiratory muscle pressure and flow generating capacity
Published in
European Journal of Applied Physiology, April 2012
DOI 10.1007/s00421-012-2399-4
Pubmed ID
Authors

Lisa A. Griffiths, Alison K. McConnell

Abstract

During the rowing stroke, the respiratory muscles are responsible for postural control, trunk stabilisation, generation/transmission of propulsive forces and ventilation (Bierstacker et al. in Int J Sports Med 7:73-79, 1986; Mahler et al. in Med Sci Sports Exerc 23:186-193, 1991). The challenge of these potentially competing requirements is exacerbated in certain parts of the rowing stroke due to flexed (stroke 'catch') and extended postures (stroke 'finish'). The purpose of this study was to assess the influence of the postural role of the trunk muscles upon pressure and flow generating capacity, by measuring maximal respiratory pressures, flows, and volumes in various seated postures relevant to rowing. Eleven male and five female participants took part in the study. Participants performed two separate testing sessions using two different testing protocols. Participants performed either maximal inspiratory or expiratory mouth pressure manoeuvres (Protocol 1), or maximal flow volume loops (MFVLs) (Protocol 2), whilst maintaining a variety of specified supported or unsupported static rowing-related postures. Starting lung volume was controlled by initiating the test breath in the upright position. Respiratory mouth pressures tended to be lower with recumbency, with a significant decrease in P (Emax) in unsupported recumbent postures (3-9 % compared to upright seated; P = 0.036). There was a significant decrease in function during dynamic manoeuvres, including PIF (5-9 %), FVC (4-7 %) and FEV(1) (4-6 %), in unsupported recumbent postures (p < 0.0125; Bonferroni corrected). Thus, respiratory pressure and flow generating capacity tended to decrease with recumbency; since lung volumes were standardised, this may have been, at least in part, influenced by the postural co-contraction of the trunk muscles.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 36 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 30%
Student > Master 5 14%
Student > Doctoral Student 4 11%
Student > Bachelor 3 8%
Researcher 2 5%
Other 7 19%
Unknown 5 14%
Readers by discipline Count As %
Sports and Recreations 10 27%
Medicine and Dentistry 7 19%
Agricultural and Biological Sciences 4 11%
Nursing and Health Professions 3 8%
Neuroscience 2 5%
Other 3 8%
Unknown 8 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 May 2012.
All research outputs
#17,286,645
of 25,374,917 outputs
Outputs from European Journal of Applied Physiology
#3,318
of 4,345 outputs
Outputs of similar age
#114,974
of 175,433 outputs
Outputs of similar age from European Journal of Applied Physiology
#25
of 34 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,345 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 175,433 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.