↓ Skip to main content

Effects of Elevated Temperature on the Shell Density of the Large Benthic Foraminifera Amphistegina lobifera

Overview of attention for article published in Journal of Eukaryotic Microbiology, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of Elevated Temperature on the Shell Density of the Large Benthic Foraminifera Amphistegina lobifera
Published in
Journal of Eukaryotic Microbiology, June 2016
DOI 10.1111/jeu.12325
Pubmed ID
Authors

Martina Prazeres, John M. Pandolfi

Abstract

This study investigated the effects of elevated temperature on shell density and Mg-ATPase activity of Amphistegina lobifera. This species is abundant in shallow reef habitats, and can be vulnerable to daily physicochemical fluctuations. To assess potential responses and acclimation mechanisms of A. lobifera to changing temperature conditions, we performed a blocked-design experiment exposing specimens collected from different reef sites (inshore and offshore) to three temperature treatments (Control: 24 °C, +2 °C: 26 °C and +5 °C: 29 °C) for 30 days. The final size and shell density of inshore reef foraminifera were unaffected by elevated temperature, and the enzyme activity in these individuals showed that they were able to acclimate to new temperature conditions. In contrast, offshore A. lobifera were more sensitive to changes in temperature, and heat stress caused growth impairment and inhibited Mg-ATPase activity. However, newly added chambers were not affected. These results suggested that Mg-ATPase plays an important role in regulating intracellular Mg(2+) ions, but has little influence in the onset of calcification in A. lobifera. Moreover, it suggests that even though A. lobifera can regulate intracellular functions, local habitat seems to play a crucial role in determining how foraminifera respond to environmental changes. This article is protected by copyright. All rights reserved.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 20%
Student > Master 5 13%
Other 3 8%
Researcher 3 8%
Professor 3 8%
Other 8 20%
Unknown 10 25%
Readers by discipline Count As %
Environmental Science 11 28%
Earth and Planetary Sciences 8 20%
Agricultural and Biological Sciences 6 15%
Business, Management and Accounting 1 3%
Chemical Engineering 1 3%
Other 2 5%
Unknown 11 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 November 2016.
All research outputs
#3,541,886
of 24,542,484 outputs
Outputs from Journal of Eukaryotic Microbiology
#113
of 1,022 outputs
Outputs of similar age
#61,121
of 345,313 outputs
Outputs of similar age from Journal of Eukaryotic Microbiology
#10
of 20 outputs
Altmetric has tracked 24,542,484 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,022 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,313 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.