↓ Skip to main content

Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: A nutritional approach

Overview of attention for article published in Amino Acids, November 2003
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
152 Dimensions

Readers on

mendeley
153 Mendeley
Title
Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: A nutritional approach
Published in
Amino Acids, November 2003
DOI 10.1007/s00726-003-0048-2
Pubmed ID
Authors

V. Calabrese, G. Scapagnini, C. Colombrita, A. Ravagna, G. Pennisi, A. M. Giuffrida Stella, F. Galli, D. A. Butterfield

Abstract

Oxidative stress has been implicated in mechanisms leading to neuronal cell injury in various pathological states of the brain. Alzheimer's disease (AD) is a progressive disorder with cognitive and memory decline, speech loss, personality changes and synapse loss. Many approaches have been undertaken to understand AD, but the heterogeneity of the etiologic factors makes it difficult to define the clinically most important factor determining the onset and progression of the disease. However, increasing evidence indicates that factors such as oxidative stress and disturbed protein metabolism and their interaction in a vicious cycle are central to AD pathogenesis. Brains of AD patients undergo many changes, such as disruption of protein synthesis and degradation, classically associated with the heat shock response, which is one form of stress response. Heat shock proteins are proteins serving as molecular chaperones involved in the protection of cells from various forms of stress.Recently, the involvement of the heme oxygenase (HO) pathway in anti-degenerative mechanisms operating in AD has received considerable attention, as it has been demonstrated that the expression of HO is closely related to that of amyloid precursor protein (APP). HO induction occurs together with the induction of other HSPs during various physiopathological conditions. The vasoactive molecule carbon monoxide and the potent antioxidant bilirubin, products of HO-catalyzed reaction, represent a protective system potentially active against brain oxidative injury. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing the heat shock response. Increasing interest has been focused on identifying dietary compounds that can inhibit, retard or reverse the multi-stage pathophysiological events underlying AD pathology. Alzheimer's disease, in fact, involves a chronic inflammatory response associated with both brain injury and beta-amyloid associated pathology. All of the above evidence suggests that stimulation of various repair pathways by mild stress has significant effects on delaying the onset of various age-associated alterations in cells, tissues and organisms. Spice and herbs contain phenolic substances with potent antioxidative and chemopreventive properties, and it is generally assumed that the phenol moiety is responsible for the antioxidant activity. In particular, curcumin, a powerful antioxidant derived from the curry spice turmeric, has emerged as a strong inducer of the heat shock response. In light of this finding, curcumin supplementation has been recently considered as an alternative, nutritional approach to reduce oxidative damage and amyloid pathology associated with AD. Here we review the importance of the heme oxygenase pathway in brain stress tolerance and its significance as an antidegenerative mechanism potentially important in AD pathogenesis. These findings have offered new perspectives in medicine and pharmacology, as molecules inducing this defense mechanism appear to be possible candidates for novel cytoprotective strategies. In particular, manipulation of endogenous cellular defense mechanisms such as the heat shock response, through nutritional antioxidants or pharmacological compounds, represents an innovative approach to therapeutic intervention in diseases causing tissue damage, such as neurodegeneration. Consistent with this notion, maintenance or recovery of the activity of vitagenes, such as the HO gene, conceivably may delay the aging process and decrease the occurrence of age-related neurodegenerative diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 153 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 2%
Malaysia 1 <1%
Germany 1 <1%
Spain 1 <1%
Austria 1 <1%
Unknown 146 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 33 22%
Student > Ph. D. Student 30 20%
Professor 16 10%
Student > Bachelor 14 9%
Student > Master 14 9%
Other 26 17%
Unknown 20 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 37 24%
Biochemistry, Genetics and Molecular Biology 21 14%
Medicine and Dentistry 18 12%
Neuroscience 11 7%
Psychology 7 5%
Other 31 20%
Unknown 28 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 May 2021.
All research outputs
#17,657,116
of 22,665,794 outputs
Outputs from Amino Acids
#1,107
of 1,512 outputs
Outputs of similar age
#50,955
of 53,778 outputs
Outputs of similar age from Amino Acids
#4
of 4 outputs
Altmetric has tracked 22,665,794 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,512 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 53,778 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.