↓ Skip to main content

Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors

Overview of attention for article published in Applied Microbiology and Biotechnology, April 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#8 of 8,034)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
15 news outlets
blogs
6 blogs
twitter
1 X user
facebook
2 Facebook pages

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
29 Mendeley
Title
Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors
Published in
Applied Microbiology and Biotechnology, April 2016
DOI 10.1007/s00253-016-7556-y
Pubmed ID
Authors

Ji-Won Moon, Tommy J. Phelps, Curtis L. Fitzgerald Jr, Randall F. Lind, James G. Elkins, Gyoung Gug Jang, Pooran C. Joshi, Michelle Kidder, Beth L. Armstrong, Thomas R. Watkins, Ilia N. Ivanov, David E. Graham

Abstract

The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 28 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 31%
Researcher 6 21%
Student > Bachelor 3 10%
Student > Doctoral Student 2 7%
Student > Master 2 7%
Other 5 17%
Unknown 2 7%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 17%
Chemistry 4 14%
Physics and Astronomy 3 10%
Agricultural and Biological Sciences 3 10%
Business, Management and Accounting 1 3%
Other 8 28%
Unknown 5 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 146. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2016.
All research outputs
#262,586
of 24,119,703 outputs
Outputs from Applied Microbiology and Biotechnology
#8
of 8,034 outputs
Outputs of similar age
#5,052
of 303,318 outputs
Outputs of similar age from Applied Microbiology and Biotechnology
#2
of 131 outputs
Altmetric has tracked 24,119,703 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 8,034 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 303,318 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 131 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.