↓ Skip to main content

Neutral Mononuclear, Dinuclear, Tetranuclear d7/d10 Metal Complexes Containing bis-Pyrazole/Pyridine Ligands Supported by 2,6-bis(3-Pyrazolyl)Pyridine: Synthesis, Structure, Spectra, and Catalytic…

Overview of attention for article published in Inorganic Chemistry, June 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neutral Mononuclear, Dinuclear, Tetranuclear d7/d10 Metal Complexes Containing bis-Pyrazole/Pyridine Ligands Supported by 2,6-bis(3-Pyrazolyl)Pyridine: Synthesis, Structure, Spectra, and Catalytic Activity
Published in
Inorganic Chemistry, June 2012
DOI 10.1021/ic202678s
Pubmed ID
Authors

Lijuan Wan, Caishun Zhang, Yongheng Xing, Zhen Li, Na Xing, Liying Wan, Hui Shan

Abstract

A series of novel bis-pyrazole/pyridine complexes, [Zn(2)(HL(1))(2)(μ(2)-SO(4))](2)·EtOH·H(2)O (1), [Co(2)(HL(1))(2)(μ(2)-SO(4))](2)·2DMF·6H(2)O (2), [Zn(4)(HL(1))(4)(μ(4)-SO(4))][OH](2) (3), [Zn(2)(HL(2))(2)(μ(2)-SO(4))]·2H(2)O (4), [Zn(H(2)L(2))(H(2)O)(2)](SO(4))·0.87H(2)O (5) (H(2)L(1) = 2,6-di-(5-phenyl-1H-pyrazol-3-yl)pyridine, H(2)L(2) = 2,6-di-(5-methyl-1H-pyrazol-3-yl)pyridine), were synthesized hydrothermally from the self-assembly of Zn(II) or Co(II) with different types of bipyrazolyl/pyridine derivative ligands. All the complexes were characterized by elemental analysis, IR and UV-vis spectroscopy, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction. Structural analyses revealed that metal atoms (Zn and Co) in complexes 1-5 are five-coordination modes, forming slightly distorted trigonal bipyramidal geometries. In complexes 1-3, H(2)L(1) ligand connected the two metal centers via the tetradentate fashion, and the same form of connection was found in complex 4 with H(2)L(2) ligand. While in complex 5, H(2)L(2) only connected with one metal center via the tridentate fashion, which was different from those in complexes 1-4. Additionally, there are abundant hydrogen bonding interactions in complexes 1-4. Interestingly, for hydrogen bonding connecting fashions being different, the molecules for the complexes 1 and 4 are held together by the hydrogen bond to form a 1D supramolecular structure, whereas complexes 2 and 3 are a hydrogen bonded dimer. In addition, quantum chemical calculations for 1, 3, and 4, thermal behaviors and photoluminescent properties for 1 and 3-5 were performed and discussed in detail. In the mean time, we found that these complexes had potential catalytic activity for the oxidation reaction of cyclohexane.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 23%
Researcher 2 9%
Student > Master 2 9%
Student > Bachelor 1 5%
Professor 1 5%
Other 2 9%
Unknown 9 41%
Readers by discipline Count As %
Chemistry 7 32%
Medicine and Dentistry 3 14%
Chemical Engineering 2 9%
Nursing and Health Professions 1 5%
Materials Science 1 5%
Other 1 5%
Unknown 7 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 June 2012.
All research outputs
#15,245,883
of 22,668,244 outputs
Outputs from Inorganic Chemistry
#13,641
of 21,510 outputs
Outputs of similar age
#106,315
of 166,741 outputs
Outputs of similar age from Inorganic Chemistry
#93
of 358 outputs
Altmetric has tracked 22,668,244 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,510 research outputs from this source. They receive a mean Attention Score of 2.8. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 166,741 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 358 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.