↓ Skip to main content

Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier – from Targeting to Safe Administration

Overview of attention for article published in Journal of Neuroimmune Pharmacology, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
2 Facebook pages

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
63 Mendeley
Title
Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier – from Targeting to Safe Administration
Published in
Journal of Neuroimmune Pharmacology, May 2016
DOI 10.1007/s11481-016-9685-6
Pubmed ID
Authors

Maria João Gomes, Carlos Fernandes, Susana Martins, Fernanda Borges, Bruno Sarmento

Abstract

Blood-brain barrier is a tightly packed layer of endothelial cells surrounding the brain that acts as the main obstacle for drugs enter the central nervous system (CNS), due to its unique features, as tight junctions and drug efflux systems. Therefore, since the incidence of CNS disorders is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm and association efficiency close to 52 %. Their surface was functionalized with a peptide-binding transferrin receptor, in a site-oriented manner confirmed by NMR, and their targeting ability against human brain endothelial cells was successfully demonstrated by fluorescence microscopy and flow cytometry. The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without significant cytotoxicity, bring a new hopeful breath to the future of brain diseases therapies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 21%
Student > Bachelor 10 16%
Student > Master 9 14%
Other 6 10%
Researcher 4 6%
Other 10 16%
Unknown 11 17%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 16 25%
Chemistry 9 14%
Biochemistry, Genetics and Molecular Biology 7 11%
Engineering 5 8%
Chemical Engineering 2 3%
Other 6 10%
Unknown 18 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 October 2017.
All research outputs
#19,015,393
of 24,217,893 outputs
Outputs from Journal of Neuroimmune Pharmacology
#428
of 583 outputs
Outputs of similar age
#242,365
of 338,807 outputs
Outputs of similar age from Journal of Neuroimmune Pharmacology
#10
of 19 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 583 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 338,807 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.