↓ Skip to main content

Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells

Overview of attention for article published in NeuroMolecular Medicine, May 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

patent
1 patent

Citations

dimensions_citation
64 Dimensions

Readers on

mendeley
69 Mendeley
Title
Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells
Published in
NeuroMolecular Medicine, May 2016
DOI 10.1007/s12017-016-8411-0
Pubmed ID
Authors

Grace Y. Sun, Runting Li, Jiankun Cui, Mark Hannink, Zezong Gu, Kevin L. Fritsche, Dennis B. Lubahn, Agnes Simonyi

Abstract

Withania somnifera (L.) Dunal, commonly known as Ashwagandha, has been used in Ayurvedic medicine for promoting health and quality of life. Recent clinical trials together with experimental studies indicated significant neuroprotective effects of Ashwagandha and its constituents. This study is aimed to investigate anti-inflammatory and anti-oxidative properties of this botanical and its two withanolide constituents, namely, Withaferin A and Withanolide A, using the murine immortalized BV-2 microglial cells. Ashwagandha extracts not only effectively inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production in BV-2 cells, but also stimulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, leading to induction of heme oxygenase-1 (HO-1), both in the presence and absence of LPS. Although the withanolides were also capable of inhibiting LPS-induced NO production and stimulating Nrf2/HO-1 pathway, Withaferin A was tenfold more effective than Withanolide A. In serum-free culture, LPS can also induce production of long thin processes (filopodia) between 4 and 8 h in BV-2 cells. This morphological change was significantly suppressed by Ashwagandha and both withanolides at concentrations for suppressing LPS-induced NO production. Taken together, these results suggest an immunomodulatory role for Ashwagandha and its withanolides, and their ability to suppress oxidative and inflammatory responses in microglial cells by simultaneously down-regulating the NF-kB and upregulating the Nrf2 pathways.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 69 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 14%
Student > Bachelor 10 14%
Researcher 9 13%
Student > Postgraduate 5 7%
Student > Master 4 6%
Other 8 12%
Unknown 23 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 16%
Pharmacology, Toxicology and Pharmaceutical Science 7 10%
Medicine and Dentistry 6 9%
Agricultural and Biological Sciences 6 9%
Nursing and Health Professions 2 3%
Other 7 10%
Unknown 30 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2022.
All research outputs
#7,474,859
of 22,851,489 outputs
Outputs from NeuroMolecular Medicine
#178
of 447 outputs
Outputs of similar age
#118,775
of 333,087 outputs
Outputs of similar age from NeuroMolecular Medicine
#10
of 21 outputs
Altmetric has tracked 22,851,489 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 447 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,087 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.