↓ Skip to main content

Cadmium(II) Complexes: Mimics of Organophosphate Pesticide Degrading Enzymes and Metallo-β-lactamases

Overview of attention for article published in Inorganic Chemistry, July 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cadmium(II) Complexes: Mimics of Organophosphate Pesticide Degrading Enzymes and Metallo-β-lactamases
Published in
Inorganic Chemistry, July 2012
DOI 10.1021/ic300687y
Pubmed ID
Authors

Lena J. Daumann, Lawrence. R. Gahan, Peter Comba, Gerhard Schenk

Abstract

Cadmium(II) complexes of ethyl 4-hydroxy-3,5-bis(((2-hydroxyethyl)(pyridin-2-ylmethyl)amino)methyl)benzoate (CO(2)EtH(3)L1) and ethyl 4-hydroxy-3,5-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)benzoate (CO(2)EtHL2) are described. The two ligands possess an ethyl ester (CO(2)Et-) at the position para to the phenolic -OH; CO(2)EtHL2, with methyl ether donors in contrast to potentially nucleophilic alkoxide donors in CO(2)EtH(3)L1, offers a direct comparison of potential ligand-centered nucleophiles. The complex with CO(2)EtH(3)L1 was characterized using (1)H and (13)C NMR spectroscopy, mass spectrometry and microanalysis; X-ray crystallography defined a tetranuclear structure [Cd(4)(CO(2)EtH(2)L1)(2)(CH(3)COO)(3.75)Cl(0.25)(H(2)O)(2)](PF(6))(2). Functional studies of the cadmium(II) complexes were undertaken with the substrates bis(2,4-dinitrophenyl)phosphate (BDNPP), and nitrocefin to assess their phosphatase and β-lactamase activities, respectively. The complexes with CO(2)EtH(3)L1 and CO(2)EtHL2 are competent phosphoesterase mimics with K(M) = 9.4 ± 2.1 mM and 10.1 ± 3.4 mM, k(cat) = 9.4 ± 0.2 × 10(-3) s(-1) and 9.7 ± 2.7 × 10(-3) s(-1), respectively. Use of a solvent mixture containing H(2)(18)O/H(2)(16)O in the reaction with BDNPP showed that for the complex with CO(2)EtH(3)L1 the (18)O label was incorporated in the reaction product suggesting that the nucleophile involved is a Cd-OH moiety and not a metal bound alkoxide; for CO(2)EtHL2 the presence of the methyl-ether dictates that the active nucleophile must also be a hydroxide. The cadmium(II) complex with CO(2)EtH(3)L1 was furthermore found to be a competent β-lactamase mimic with k(cat) = 1.39 × 10(-2) ± 3 × 10(-3) s(-1), K(M) = 0.11 ± 0.03 mM, and pK(a) = 7.9 ± 0.1. Mass spectral evidence suggested that the active nucleophile in this reaction is the alkoxide; lack of β-lactamase activity of the complex with CO(2)EtHL2 supports this assignment. Similar to enzyme-catalyzed reactions, a blue reaction intermediate in the β-lactamase reaction of the CO(2)EtH(3)L1 complex was also identified. It is proposed that the Cd(II) complexes of CO(2)EtH(3)L1 and CO(2)EtHL2 react identically as phosphatases, with a terminal hydroxide as the nucleophile; the former exhibits β-lactamase activity with the alkoxide as a nucleophile, while the latter, without a potentially nucleophilic alkoxide, is inactive.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 15%
Other 3 11%
Student > Doctoral Student 3 11%
Professor 2 7%
Student > Ph. D. Student 2 7%
Other 7 26%
Unknown 6 22%
Readers by discipline Count As %
Chemistry 12 44%
Biochemistry, Genetics and Molecular Biology 1 4%
Chemical Engineering 1 4%
Energy 1 4%
Agricultural and Biological Sciences 1 4%
Other 0 0%
Unknown 11 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 July 2012.
All research outputs
#20,160,460
of 22,669,724 outputs
Outputs from Inorganic Chemistry
#19,383
of 21,513 outputs
Outputs of similar age
#148,090
of 164,352 outputs
Outputs of similar age from Inorganic Chemistry
#327
of 360 outputs
Altmetric has tracked 22,669,724 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,513 research outputs from this source. They receive a mean Attention Score of 2.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 164,352 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 360 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.