↓ Skip to main content

Activity in the rat olfactory cortex is correlated with behavioral response to odor: a microPET study

Overview of attention for article published in Brain Structure and Function, May 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
30 Mendeley
Title
Activity in the rat olfactory cortex is correlated with behavioral response to odor: a microPET study
Published in
Brain Structure and Function, May 2016
DOI 10.1007/s00429-016-1235-8
Pubmed ID
Authors

Philippe Litaudon, Caroline Bouillot, Luc Zimmer, Nicolas Costes, Nadine Ravel

Abstract

How olfactory cortical areas interpret odor maps evoked in the olfactory bulb and translate odor information into behavioral responses is still largely unknown. Indeed, rat olfactory cortices encompass an extensive network located in the ventral part of the brain, thus complicating the use of invasive functional methods. In vivo imaging techniques that were previously developed for brain activation studies in humans have been adapted for use in rodents and facilitate the non-invasive mapping of the whole brain. In this study, we report an initial series of experiments designed to demonstrate that microPET is a powerful tool to investigate the neural processes underlying odor-induced behavioral response in a large-scale olfactory neuronal network. After the intravenous injection of [(18)F]Fluorodeoxyglucose ([(18)F]FDG), awake rats were placed in a ventilated Plexiglas cage for 50 min, where odorants were delivered every 3 min for a 10-s duration in a random order. Individual behavioral responses to odor were classified into categories ranging from 1 (head movements associated with a short sniffing period in response to a few stimulations) to 4 (a strong reaction, including rearing, exploring and sustained sniffing activity, to several stimulations). After [(18)F]FDG uptake, rats were anesthetized to perform a PET scan. This experimental session was repeated 2 weeks later using the same animals without odor stimulation to assess the baseline level of activation in each individual. Two voxel-based statistical analyses (SPM 8) were performed: (1) a two-sample paired t test analysis contrasting baseline versus odor scan and (2) a correlation analysis between voxel FDG activity and behavioral score. As expected, the contrast analysis between baseline and odor session revealed activations in various olfactory cortical areas. Significant increases in glucose metabolism were also observed in other sensory cortical areas involved in whisker movement and in several modules of the cerebellum involved in motor and sensory function. Correlation analysis provided new insight into these results. [(18)F]FDG uptake was correlated with behavioral response in a large part of the anterior piriform cortex and in some lobules of the cerebellum, in agreement with the previous data showing that both piriform cortex and cerebellar activity in humans can be driven by sniffing activity, which was closely related to the high behavioral scores observed in our experiment. The present data demonstrate that microPET imaging offers an original perspective for rat behavioral neuroimaging.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 27%
Student > Bachelor 5 17%
Student > Master 3 10%
Student > Doctoral Student 2 7%
Student > Postgraduate 2 7%
Other 4 13%
Unknown 6 20%
Readers by discipline Count As %
Neuroscience 11 37%
Agricultural and Biological Sciences 5 17%
Psychology 4 13%
Biochemistry, Genetics and Molecular Biology 3 10%
Unknown 7 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 May 2016.
All research outputs
#21,697,638
of 24,217,893 outputs
Outputs from Brain Structure and Function
#1,524
of 1,725 outputs
Outputs of similar age
#296,429
of 339,914 outputs
Outputs of similar age from Brain Structure and Function
#29
of 34 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,914 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.