↓ Skip to main content

Role of Pericellular Matrix in the Regulation of Cancer Stemness

Overview of attention for article published in Stem Cell Reviews and Reports, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
40 Mendeley
Title
Role of Pericellular Matrix in the Regulation of Cancer Stemness
Published in
Stem Cell Reviews and Reports, May 2016
DOI 10.1007/s12015-016-9660-x
Pubmed ID
Authors

Sofia Avnet, Margherita Cortini

Abstract

Cancer stem cells (CSC) are a prominent component of the tumor bulk and extensive research has now identified them as the subpopulation responsible for tumor relapse and resistance to anti-cancer treatments. Surrounding the bulk formed of tumor cells, an extracellular matrix contributes to cancer growth; the main component of the tumor micro-environment is hyaluronan, a large disaccharide forming a molecular network surrounding the cells. The hyaluronan-dependent coat can regulate cell division and motility in cancer progression and metastasis. One of the receptors of hyaluronan is CD44, a surface protein frequently used as a CSC marker. Indeed, tumor cells with high levels of CD44 appear to exhibit CSC properties and are characterized by elevated relapse rate. The CD44-hyaluronan-dependent interactions are Janus-faced: on one side, they have been shown to be crucial in both malignancy and resistance to therapy; on the other, they represent a potential value for future therapies, as disturbing the CD44-hyaluronan axis would not only impair the pericellular matrix but also the subpopulation of self-renewing oncogenic cells. Here, we will review the key roles of HA and CD44 in CSC maintenance and propagation and will show that CSC-like spheroids from a rabdhomyosarcoma cell line, namely RD, have a prominent pericellular coat necessary for sphere formation and for elevated migration. Thus, a better understanding of the hyaluronan-CD44 interactions holds the potential for ameliorating current cancer therapies and eradicating CSC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 30%
Student > Bachelor 5 13%
Other 4 10%
Student > Ph. D. Student 4 10%
Professor > Associate Professor 3 8%
Other 5 13%
Unknown 7 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 30%
Medicine and Dentistry 6 15%
Agricultural and Biological Sciences 4 10%
Psychology 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 2 5%
Unknown 12 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2016.
All research outputs
#14,473,281
of 25,373,627 outputs
Outputs from Stem Cell Reviews and Reports
#522
of 1,035 outputs
Outputs of similar age
#176,294
of 349,577 outputs
Outputs of similar age from Stem Cell Reviews and Reports
#9
of 19 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,035 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 349,577 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.