↓ Skip to main content

Baculovirus Lymantria dispar multiple nucleopolyhedrovirus IAP2 and IAP3 do not suppress apoptosis, but trigger apoptosis of insect cells in a transient expression assay

Overview of attention for article published in Virus Genes, July 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
18 Mendeley
Title
Baculovirus Lymantria dispar multiple nucleopolyhedrovirus IAP2 and IAP3 do not suppress apoptosis, but trigger apoptosis of insect cells in a transient expression assay
Published in
Virus Genes, July 2012
DOI 10.1007/s11262-012-0783-0
Pubmed ID
Authors

Hayato Yamada, Miyuki Shibuya, Michihiro Kobayashi, Motoko Ikeda

Abstract

Ld652Y cells derived from the gypsy moth, Lymantria dispar, are permissive for productive infection with L. dispar multiple nucleopolyhedrovirus (LdMNPV), but undergo apoptosis upon infection with various other NPVs, including those isolated from Bombyx mori, Hyphantria cunea, Spodoptera exigua, Orgyia pseudotsugata, and Spodoptera litura. In this study, we examined whether LdMNPV-encoded inhibitor of apoptosis 2 (Ld-IAP2) and 3 (Ld-IAP3) are involved in apoptosis suppression in LdMNPV-infected Ld652Y cells. We found that neither Ld-IAP2 nor Ld-IAP3 was able to suppress the apoptosis of Ld652Y cells induced by p35-defective Autographa californica MNPV (vAcΔp35). However, both Ld-IAP2 and Ld-IAP3 induced apoptosis in Ld652Y cells in a transient expression assay. The apoptosis induced by Ld-IAP3 was accompanied by the stimulation of caspase-3-like protease activity and cleavage of the B. mori homolog of the initiator caspase Dronc, and was precluded by the LdMNPV-encoded apoptosis suppressor protein Apsup and H. cunea MNPV IAP3. Inconsistent with the results obtained previously in SpIm, Ld652Y and High Five cells infected with NPVs from H. cunea, O. pseudotsugata, and A. californica, respectively, considerable stimulation of caspase-3-like protease activity was not observed in LdMNPV-infected Ld652Y cells, likely due to the strong apoptosis suppression activity of Apsup. These results, together with the previous finding that RNAi-mediated silencing of apsup induces apoptosis of LdMNPV-infected Ld652Y cells, indicate that Apsup, but not Ld-IAP2 or Ld-IAP3, is primarily responsible for the suppression of apoptosis in LdMNPV-infected Ld652Y cells. However, it remains inconclusive whether Ld-IAP2 and Ld-IAP3 function as pro-apoptotic proteins in LdMNPV-infected Ld652Y cells.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 2 11%
Unknown 16 89%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 39%
Student > Master 4 22%
Student > Ph. D. Student 3 17%
Student > Doctoral Student 1 6%
Professor 1 6%
Other 0 0%
Unknown 2 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 67%
Biochemistry, Genetics and Molecular Biology 2 11%
Nursing and Health Professions 1 6%
Unknown 3 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 July 2012.
All research outputs
#18,310,549
of 22,671,366 outputs
Outputs from Virus Genes
#676
of 957 outputs
Outputs of similar age
#126,699
of 164,410 outputs
Outputs of similar age from Virus Genes
#7
of 10 outputs
Altmetric has tracked 22,671,366 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 957 research outputs from this source. They receive a mean Attention Score of 2.4. This one is in the 17th percentile – i.e., 17% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 164,410 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.